

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. М.В.ЛОМОНОСОВА

Физический факультет

Г.Н. Медведев

35 задач по аналитической геометрии. Практическое пособие

Москва Физический факультет МГУ 2018 Медведев Г. Н. **35 задач по аналитической геометрии. Практическое пособие** / Учебное пособие. М.: Физический факультет МГУ, 2018.

Учебное пособие написано предназначено в первую очередь для студентов первого курса физического факультета МГУ. Разобраны основные типы задач, возникающих при рассмотрении прямой на плоскости и прямых и плоскостей в пространстве. Задачи разобраны в общем виде и сопровождаются примерами. Пособие также будет полезно преподавателям, ведущим семинарские занятия по аналитической геометрии.

Медведев Герман Николаевич

35 ЗАДАЧ ПО АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ. ПРАКТИЧЕСКОЕ ПОСОБИЕ

Физический факультет МГУ им. М.В. Ломоносова 119991, Москва, ГСП-1, Ленинские горы, д.1, стр.2

©Физический факультет МГУ им. М.В. Ломоносова, 2018 ©Медведев Г.Н., 2018

ОГЛАВЛЕНИЕ

От автора	4
Введение	5
Список литературы	13

От автора

Учебное пособие написано на основе семестрового курса лекций, который автор много лет читал студентам в разные годы 4 или 5 курса кафедры математики физического факультета МГУ. Знакомство с методом усреднения может быть полезно и студентам других кафедр, а также всем, кто интересуется классикой математики и физики. Я приношу благодарность всем сотрудникам кафедры математики, с которыми приходилось обсуждать математические и методические вопросы. Компьютерный набор текста выполнили П.А. Мангура и Д.П. Мартынов, за что я им очень благодарен. С признательностью и благодарностью обращаюсь к Н.Е. Шапкиной и И.Е. Могилевскому, у которых всегда нахожу помощь и поддержку. Отдельная благодарность С.С. Кротову за интересные беседы и всегда полезные замечания.

Г.Н. Медведев

Введение

В книге будут использоваться следующие понятия и обозначения. При выбранном полюсе O (он же – начало координат системы Oxy или Oxyz) через

$$\overline{r} = \{x,y\}$$
 или $\overline{r} = \{x,y,z\}$

будет обозначаться радиус-вектор точки с координатами (x,y) или (x,y,z).

Разрешим не писать каждый раз "точка с радиусом-вектором \overline{r} ", а будем использовать это же обозначения \overline{r} для самой точки x,y или x,y,z.

Из контекста всегда понятно, что через $\overline{r}-\overline{r}_0$ обозначается не "разность точек", а разность радиусов-векторов \overline{r} и \overline{r}_0 . Но разность $\overline{r}-\overline{r}_0$ вполне можно (и удобно) называть вектором, направленным из точки \overline{r}_0 в точку \overline{r} .

Вектор $\overline{r}-\overline{r}_0$ назовем текущим вектором, направленным из точки \overline{r}_0 в точку \overline{r} , и будем обозначать его так $\overline{r}_0 \leadsto_{\overline{r}}$ (точка \overline{r} "бегает" по прямой или плоскости).

Ортогональной проекцией вектора $\overline{r}-\overline{r}_0$ на ось, задаваемую единичным вектором \overline{e} будем называть вектор

$$\overline{r}_1 - \overline{r}_0 = (\overline{r} - \overline{r}_0, \overline{e})\overline{e}.$$

Такое определение удобно для проекции вектора на координатную ось или на координатную плоскость. Проекция вектора $\overline{r}-\overline{r}_0$ на координатную ось Ox есть вектор

$$\overline{r_1} - \overline{r}_0 = (\overline{r} - \overline{r}_0, \overline{i})\overline{i} = (x - x_0)\overline{i}.$$

Проекцией вектора $\overline{r}-\overline{r}_0$ на координатную плоскость Oxy будет вектор

$$\overline{r_1} - \overline{r}_0 = (\overline{r} - \overline{r}_0, \overline{i})\overline{i} + (\overline{r} - \overline{r}_0, \overline{j})\overline{j} = (x - x_0)\overline{j} + (y - y_0)\overline{j}.$$

File 'draw1.png' not found File 'draw2.png' not found

Рекомендуемый план решения любой задачи (как на плоскости, так и в пространстве):

- 1. Общий чертеж ситуации задачи (не привязывая его к конкретным числовым данным задачи).
- 2. Выбор наиболее подходящего способа задания "участников" прямых или плоскостей. В большинстве задач векторное задание позволяет принципиально решить задачу в одну или две строки в общем виде.
- 3. Реализация полученного общего решения для конкретных условий задачи.

Понятно, что получение "наиболее подходящего способа задания участников" требует свободного владения переходами от одного способа задания объекта к другому.

Например, прямая, заданная как линия пересечения двух плоскостей

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_1 = 0, \end{cases}$$

должна "с легкостью" преобразовываться к виду

$$\overline{r} = \overline{r}_0 + \overline{a}t,$$

где \overline{r}_0 — начальная точка на этой прямой, а \overline{a} — направляющий вектор.

Из заданных уравнений нужно получить и точку \overline{r}_0 и вектор \overline{a} .

Прямая на плоскости

Задача 1.

Различные способы задания прямой на плоскости . Переход от одного способа задания к другому.

В задачах на плоскости, прежде всего, надо преодолеть школьную привычку к уравнению y=kx+b, которое не описывает прямую $x=x_0$ и поэтому не может считаться общим уравнением прямой на плоскости.

Общем уравнением, задающим любую прямую на плоскости, является уравнение

$$Ax + By + C = 0. (1)$$

Если точка (x_0, y_0) лежит на этой прямой, то имеем

$$Ax_0 + By_0 + C = 0. (2)$$

Вычитая уравнения (1) и (2) одно из другого, получаем

$$A(x - x_0) + B(y - y_0) = 0. (3)$$

Равенство (3) означает ортогональность вектора $\overline{N}=\{A;B\}$ и текущего вектора $\overline{r}-\overline{r}_0=\{x-x_0;y-y_0\}$ нашей прямой

$$(\overline{N}; \overline{r} - \overline{r}_0) = 0.$$

Значит, вектор $\overline{N}=\{A;B\}$ это вектор нормали к прямой Ax+By+C=0.

File 'draw3.png' not found

Направляющий вектор \overline{a} , ортогональный вектору \overline{N} , т.е. удовлетворяющий условию $(\overline{a}; \overline{N}) = 0$, легко получить в виде

$$\overline{a} = \{-B; A\}.$$

Условие коллинеарности вектора $\overline{r}-\overline{r}_0$ и вектора \overline{a} дает векторное уравнение прямой

$$\overline{r} - \overline{r}_0 = \overline{a}t$$
,

где t – произвольный числовой параметр. Естественно, что это уравнение обычно записывают в виде

$$\overline{r} = \overline{r}_0 + \overline{a}t. \tag{4}$$

В дальнейшем направляющий вектор \overline{a} прямой на плоскости будем в координатах писать в виде $\overline{a}=\{l,m\}.$

Если вектор $\overline{r}-\overline{r}_0=\{x-x_0;y-y_0\}$ коллинеарен вектору $\overline{a}=\{l,m\}$, то условие $\overline{r}-\overline{r}_0\|\overline{a}$ в координатах выглядит так

$$\frac{x - x_0}{l} = \frac{y - y_0}{m}. (5)$$

Уравнение (5) называют каноническим уравнением прямой. Добавление параметра t дает два уравнения

$$\frac{x - x_0}{l} = \frac{y - y_0}{m} = t, (6)$$

называемые параметрическими уравнениями прямой.

Замечание. К сожалению, иногда не только говорят, но и пишут про два уравнения (6) "параметрическое уравнение прямой".

Итак, мы познакомились с четырьмя видами (1), (4), (5) и (6) уравнений прямой на плоскости, и время решения конкретных задач зависит от выбора наиболее подходящего способа задания прямой.

Далее мы увидим, что в большинстве задач, как на плоскости, так и в пространстве, краткий и быстрый путь решения обеспечивается векторной формой уравнений.

Задача 2.

Найти уравнение прямой, проходящей через данную точку и параллельную данной прямой.

Решение

Пусть дана точка $\overline{r_0}$. Каким бы образом в условии ни была задана данная прямая l, мы находим ее направляющий вектор $\overline{a} = \{l, m\}.$

File 'draw4.png' not found

Остается дописать условие коллинеарности текущего вектора $\overline{r} - \overline{r}_0$ исходной прямой и вектора \overline{a} :

$$\overline{r} - \overline{r}_0 \| \overline{a}$$
,

откуда

уда $\overline{r}=\overline{r}_0+\overline{a}t$ — векторное уравнение исходной прямой, или в координатах $\frac{x-x_0}{l}=\frac{y-y_0}{m}$ — каноническое уравнение, или $\frac{x-x_0}{l}=\frac{y-y_0}{m}=t$ — параметрическое уравнение. Тем что, хотя в задаче спрашивали про "уравнение", но в

последнем случае прямую задает "уравнения".

В любом варианте нам помогает векторная модель задачи.

Пример к решению задачи 2.

Пусть заданы прямая l уравнением 2x+3y+4=0 и точка $\overline{r}_0=\{1;2\}.$

Находим нормальный к прямой l вектор $\overline{N}=\{2;3\}$ и направляющий вектор прямой $\overline{a}=\{-3;2\}.$

Векторное уравнение исходной прямой есть $\overline{r}=\overline{r}_0+\overline{a}t$. Это же уравнение в координатах выглядит так

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} -3 \\ 2 \end{pmatrix} t,$$
или
$$x = 1 - 3t,$$

$$y = 2 + 2t.$$
(7)

Исключая в (7) параметр t, получаем каноническое уравнение

$$\frac{x-1}{-3} = \frac{y-2}{2}.$$

Оставляя параметр t, получаем параметрическое уравнение

$$\frac{x-1}{-3} = \frac{y-2}{2} = t.$$

Задача 3.

Найти уравнение прямой, проходящей через данную точку и перпендикулярную к данной прямой.

Решение

Направляющим вектором искомой прямой является вектор \overline{N} нормали к данной прямой l.

Опять, каким бы образом ни была задана прямая l, мы находим ее вектор нормали \overline{N} , а значит векторное уравнение этой прямой есть

$$\overline{r} = \overline{r}_0 + \overline{N}t. \tag{8}$$

Пример к решению задачи 3.

Пусть опять заданы прямая l уравнением 2x + 3y + 4 = 0 и точка $\overline{r}_0 = \{1, 2\}$.

Находим нормальный к прямой l вектор $\overline{N}=\{2;3\}$. Векторное уравнение (8) искомой прямой, коллинеарной вектору \overline{N} , в координатах выглядит так

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 3 \end{pmatrix} t,$$
 или
$$x = 1 + 2t,$$

$$y = 2 + 3t.$$

Исключая параметр t, получаем каноническое уравнение

$$\frac{x-1}{2} = \frac{y-2}{3}.$$

Оставляя параметр t, получаем параметрические уравнения

$$\frac{x-1}{2} = \frac{y-2}{3} = t.$$

Список литературы

- 1. Боголюбов Н.Н, Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М: Наука, 1974.
- 2. Васильева А.Б., Бутузов В.Ф. Асимптотические методы в теории сингулярных возмущений. М: Высшая школа, 1990.
- 3. Волосов В.М., Моргунов Б.И. Метод осреднения в теории нелинейных колебательных систем.М: Изд-во МГУ, 1971.
- 4. Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988.