Тематическая лекция 2

ПРИНЦИП МАКСИМУМА

В этой лекции мы докажем слабый принцип максимума и рассмотрим его приложения.

§ 1. Области

Прежде всего рассмотрим основные понятия, связанные с рассматриваемыми областями $D \subset \mathbb{R}^N$. Заметим, что при рассмотрении эллиптических операторов, например, оператора Лапласа в некоторой ограниченной области $\Omega \subset \mathbb{R}^2$, мы имели дело приблизительно с такой областью (ограниченной):

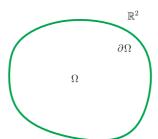


Рис. 1. Область $\Omega \subset \mathbb{R}^2$ с гладкой границей $\partial \Omega$.

Область Ω имеет гладкую границу $\partial\Omega$ и граничные условия ставятся на полной границе $\partial\Omega$. Например, можно поставить задачу Дирихле

$$\Delta u(x) = f(x)$$
 в $x \in \Omega$, $u = \varphi(x)$ при $x \in \partial \Omega$. (1.1)

В отличие от эллиптического случая, как правило, область $D\subset \mathbb{R}^N_x\otimes \mathbb{R}^1_t$ имеет не гладкую границу ∂D . Действительно, она имеет угловые точки. Классический пример приведен на рисунке 7. Кроме того, в отличие от эллиптических уравнений граничные условия для параболических уравнений ставятся не на полной границе ∂D области D, а только на так называемой *параболической границе* $\partial' D$.

Например, можно предъявить такую постановку краевой задачи:

$$u_t - u_{xx} = f(x, t), \quad x \in (a, b), \quad t \in (0, t_0],$$
 (1.2)

$$u|_{t=0} = u_0(x), \quad x \in [a, b],$$
 (1.3)

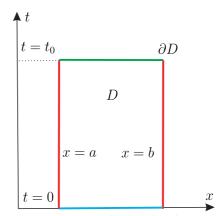


Рис. 2. Цилиндрическая область $D=(a,b)\otimes (0,t_0)$ с негладкой границей ∂D .

$$u|_{x=a} = \varphi_1(t), \quad u|_{x=b} = \varphi_2(t), \quad t \in [0, t_0].$$
 (1.4)

В краевой задаче (1.2)–(1.4) отсутствует граничное условие при $t=t_0$. Согласно нашим сформировавшимся после курса лекций $\mathsf{MM\Phi}$ А. Н. Боголюбова [?] представлениям это граничное условие не нужно, поскольку значение решения u(x,t) в момент времени $t=t_0$ вполне определяется уже заданными граничными условиями (1.3), (1.4) и правой частью f(x,t). И это связано с тем, что параболический оператор содержит производную по времени первого порядка, а не второго как в случае, например, волнового уравнения. Более того, можно создать такое уравнение второго порядка по t

$$u_{tt} + u_{xx} = f(x, t),$$
 (1.5)

для корректной постановки которого в принципе нужно задание граничного условия при $t=t_0$. Правда, такое уравнение в физике не встречается.

Теперь заметим, что мы используем несколько другую терминологию, чем в курсе ММФ. Мы называем условие (1.3) не начальным условием, а граничным. Хотя можно это условие называть как начальным условием, так и граничным условием. В связи с этим задачу (1.2)–(1.4) называют или задача Коши–Дирихле или называют первая краевая задача. При чтении научной литературы по дифференциальным уравнениям используется второе название, а при чтении научной литературы по математической физики используется первое название.

Давайте сформулируем некоторые понятия и определения, связанные с рассмотрением областей $D \subset \mathbb{R}^N$, где изучаются параболические уравнения.

Итак, ограниченная область $D\subset \mathbb{R}^{N+1}$, изображенная на следующем рисунке имеет границу ∂D , состоящую из следующих частей: из

1. Области 3

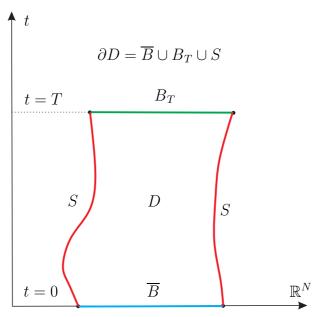


Рис. 3. Граница ∂D области $D\subset \mathbb{R}^{N+1}.$

основания при t=0, называемая нижней крышкой

$$\overline{B} \stackrel{def:}{=} \partial D \cap \{t = 0\}, \quad \overline{B} = B \cup \partial B,$$

из верхней крышки

$$\overline{B}_T \stackrel{def:}{=} \partial D \cap \{t = T\}, \quad \overline{B}_T = B_T \cup \partial B_T,$$

и из боковой поверхности

$$S \stackrel{def:}{=} \partial D \cap \{0 < t < T\} \cup \partial B_T.$$

При этом мы в основном рассматриваем такие области $D\subset \mathbb{R}^N$, что множества

$$B$$
 и B_T

являются областями в соответствующих гиперплоскостях t=0 и t=T. Символом \overline{B} мы обозначили замыкание области B, \overline{B}_T — замыкание области B_T , а символами ∂B и ∂B_T мы обозначили границы областей B и B_T , соответственно.

Отметим, что граничные условия решения параболического уравнения, как мы уже отметили, задаются не на всей границе ∂D области D, а только на ее части

$$\partial' D \stackrel{def:}{=} \overline{B} \cup S,$$

называемой нормальной границей или параболической границей. Отметим, что на практике довольно часто область $D \subset \mathbb{R}^{N+1}$ может быть представлена в виде цилиндра $D = \Omega \otimes (0,T)$ или в более общем случае $D = \Omega \otimes (T_0,T)$, где $\Omega \subset \mathbb{R}^N$. Такую область называют цлиндрической областью. Пример цилиндрической области приведен на рисунке 7. С другой стороны, много практических примеров, так называемых областей с подвижной границей, когда область D является нецилиндрической. Пример, нецилиндрической области изображен на рисунке 8. Кроме того, введем обозначение

$$\overline{\partial' D} \stackrel{def}{=} \overline{B} \cup \overline{S}.$$

Кроме того, используют следующие обозначения (см. рисунок 9):

$$B_{\tau} \stackrel{def:}{=} D \cap \{t = \tau\}, \quad D_{\tau} \stackrel{def:}{=} D \cap \{0 < t < \tau\}, \quad S_{\tau} \stackrel{def:}{=} S \cap \{0 < t \leqslant \tau\}$$

для любого $au \in (0,T)$. Мы будем в дальнейшем рассматривать в ос-

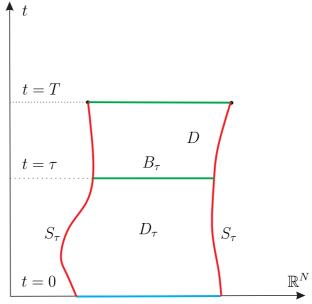


Рис. 4. Множества $D_{ au},\,B_{ au}$ и $S_{ au}.$

новном такие области $D\subset\mathbb{R}^{N+1}$, что множества $B_{ au}$ для всех $au\in[0,T]$ являются областями (связными и открытыми множествами) на соответствующих гиперплоскостях t= au.

§ 2. Постановка задач для параболических операторов

В курсе лекций мы будем рассматривать не только задачу Коши и первую краевую задачу, а также вторую и третью краевые задачи. Итак, последовательно дадим постановки указанных задач. Прежде всего дадим определение параболического уравнения в области $D \subset \mathbb{R}^{N+1}$. Рассмотрим следующее уравнение:

$$Lu(x,t) \stackrel{def:}{=} = \sum_{i,j=1,1}^{N,N} a_{ij}(x,t) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,t) \frac{\partial u}{\partial x_i} + c(x,t)u - \frac{\partial u}{\partial t} = f(x,t).$$

$$(2.1)$$

Оператор L, определенный равенством (2.1), называется параболическим в области $D \subset \mathbb{R}^{N+1}$, если для всех $(x,t) \in D$ и для каждого $0 \neq \xi \in \mathbb{R}^N$ выполнено следующее неравенство:

$$\sum_{i,j=1,1}^{N,N} a_{ij}(x,t)\xi_i\xi_j > 0.$$
 (2.2)

Иначе говоря, оператор L называется параболическим в области D, если его часть

$$L_0 u \stackrel{\text{def:}}{=} \sum_{i,j=1,1}^{N,N} a_{ij}(x,t) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^N b_i(x,t) \frac{\partial u}{\partial x_i} + c(x,t) u \tag{2.3}$$

для все $\underline{x}(x,t) \in D$ является эллиптическим оператором по переменным $x_i, i = \overline{1, N}$ с параметром t.

Определение решения параболического уравнения. Функция u=u(x,t) непрерывная вместе со всеми своими производными

$$\frac{\partial u}{\partial t}$$
, $\frac{\partial u}{\partial x_i}$, $\frac{\partial^2 u}{\partial x_i \partial x_j}$,

входящими в оператор L, в области D называется классическим решением уравнения (2.1).

3адача Коши. Найти классическое решение u(x,t) уравнения

$$Lu(x,t) = f(x,t)$$
 npu $(x,t) \in \mathbb{R}^{N+1}_+ \stackrel{def}{=} \mathbb{R}^N \otimes (0,+\infty),$ (2.4)

удовлетворяющего начальному (граничному при t=0) условию

$$u(x,0) = u_0(x), \quad x \in \mathbb{R}^N.$$
 (2.5)

Замечание 1. Сразу же заметим, что задача Коши имеет, вообще говоря, неединственное решение. Для того чтобы классическое решение

задачи Коши было единственным достаточно потребовать выполнения следующих неравенств:

$$|u_0(x)| \le M \exp\left(\beta |x|^2\right), \quad |f(x,t)| \le M \exp\left(\beta |x|^2\right)$$
 (2.6)

при $x \in \mathbb{R}^N$ и $t \geqslant 0$ для некоторых постоянных M > 0 и $\beta > 0$.

Первая краевая задача. Найти классическое решение u(x,t) непрерывное на замыкании \overline{D} области $D\subset\mathbb{R}^{N+1}$, удовлетворяющее уравнению

$$Lu(x,t) = f(x,t) \quad npu \quad (x,t) \in D \cup B_T,$$
 (2.7)

начальному условию на нижней крышке (граничному при t=0)

$$u(x,0) = u_0(x)$$
 npu $x \in \overline{B}$, (2.8)

а также граничному условию на поверхности на боковой границе S

$$u(x,t) = g(x,t)$$
 npu $(x,t) \in S \stackrel{def:}{=} (\partial D \cap \{0 < t < T\}) \cup \partial B_T$. (2.9)

Замечание 2. Отметим, что граничные условия (2.8) и (2.9) можно объединить в одно граничное условие на параболической границе $\partial' D = \overline{B} \cup S$ полной границы ∂D имеющее вид:

$$u(x,t) = \psi(x,t)$$
 при $(x,t) \in \partial' D$. (2.10)

Как мы видим специфика первой краевой задачи для параболического оператора L — это отсутствие граничного условия на верхней крышке B_T области D.

Для того чтобы сформулировать вторую краевую задачу для параболического оператора L в области $D \subset \mathbb{R}^{N+1}$ нам нужно ввести производную по внутренней нормали $\partial/\partial n_{x,t}$ и производную по внутренней конормали $\partial/\partial \nu_{x,t}$ к боковой поверхности S. Пусть в каждой точке $(x,t) \in S$ определено непрерывное векторное поле внутренних нормалей $n_{x,t}$, лежащее для любого $t=\tau \in [0,T]$ в случае цилиндрической области D на гиперплоскости $t=\tau$ и определенное своими углами $\cos(n_{x,t},e_i)$. Тогда вектор внутренней конормали $\nu_{x,t}$ определен следующим образом:

$$\nu_{x,t} = \left(\sum_{i=1}^{N} a_{i1}(x,t)\cos(n_{x,t},e_i), \cdots, \sum_{i=1}^{N} a_{iN}(x,t)\cos(n_{x,t},e_i)\right),\,$$

лежащий тоже на гиперплоскости $t=\tau$ в случае цилиндрической области D. Оператором нормальной производной называется следующая величина:

$$\frac{\partial u(x,t)}{\partial n_{x,t}}\Big|_{S} \stackrel{\text{def:}}{=} \sum_{i=1}^{N} \cos(n_{x,t},e_i) \frac{\partial u}{\partial x_i}\Big|_{S},$$
 (2.11)

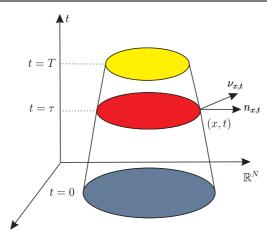


Рис. 5. Векторы внешней нормали $n_{x,t}$ и внешней конормали $\nu_{x,t}$.

а оператором конормальной производной в случае оператора L с матрицей $(a_{ij}(x,t))$ является величина

$$\frac{\partial u(x,t)}{\partial \nu_{x,t}}\Big|_{S} \stackrel{def:}{=} \sum_{i,j=1,1}^{N,N} a_{ij}(x,t) \cos(n_{x,t},e_i) \frac{\partial u}{\partial x_j}\Big|_{S}.$$
 (2.12)

Вторая краевая задача. Найти классическое решение u(x,t) уравнения

$$Lu(x,t) = f(x,t)$$
 npu $(x,t) \in D \cup B_T$, (2.13)

удовлетворяющего начальному условию

$$u(x,0) = u_0(x)$$
 npu $x \in \overline{B}$ (2.14)

и граничноми условию

$$\frac{\partial u(x,t)}{\partial \nu_{x,t}} = g(x,t) \quad npu \quad (x,t) \in S. \tag{2.15}$$

Третья краевая задача. Найти классическое решение u(x,t) уравнения

$$Lu(x,t) = f(x,t)$$
 npu $(x,t) \in D \cup B_T$, (2.16)

удовлетворяющего начальному условию

$$u(x,0) = u_0(x)$$
 npu $x \in \overline{B}$ (2.17)

и граничному условию

$$\frac{\partial u(x,t)}{\partial \nu_{x,t}} + \beta(x,t)u(x,t) = g(x,t) \quad npu \quad (x,t) \in S.$$
 (2.18)

3 а м е ч а н и е 3. Отметим, что можно задать на боковой поверхности S также общее граничное условие следующего вида:

$$\frac{\partial u(x,t)}{\partial l_{x,t}} + \beta(x,t)u(x,t) = g(x,t) \quad \text{при} \quad (x,t) \in S, \tag{2.19}$$

где векторное внутреннее поле $l_{x,t}$ является непрерывным векторным полем на S нигде не совпадающее с касательным направлением к поверхности S.

Помимо перечисленных задач можно рассматривать также задач у Стефана со свободной границей (см. подробное рассмотрение этой задачи в книге \cite{P}), когда заранее граница области D полностью неизвестна. Однако, эту задачу мы рассматривать не будем и поэтому не формулируем.

§ 3. Определения

Рассмотрим оператор

$$Lu \stackrel{def:}{=} \sum_{i=1}^{N,N} a_{ij}(x,t) \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,t) \frac{\partial u}{\partial x_i} + c(x,t)u - \frac{\partial u}{\partial t}$$
(3.1)

в (N+1)-мерной области (связное, открытое множество) $D\subset \mathbb{R}^{N+1}$. Пусть коэффициенты оператора L удовлетворяют следующим условиям:

(A) Оператор L — параболический в D, т. е. для каждой точки $(x,t)\in D$ и для любого $0\neq \xi\in \mathbb{R}^N$ выполнено неравенство

$$\sum_{i,j=1,1}^{N,N} a_{ij}(x,t)\xi_i\xi_j > 0;$$

- (B) коэффициенты оператора L непрерывные функции в D;
- (C) $c(x,t) \leq 0$ в D.

Дадим определение классического решения уравнения (3.1) в области D.

Определение классического решения. Непрерывная в D функция u(x,t) называется классическим решением уравнения Lu=0 в области $D\subset\mathbb{R}^{N+1}$, если все слагаемые входящие в оператор Lu, m.e.

$$\frac{\partial u}{\partial x_i}$$
, $\frac{\partial^2 u}{\partial x_i \partial x_j}$, $\frac{\partial u}{\partial t}$,

являются непрерывными функциями в области D и уравнение Lu(x,t)=0 выполнено в каждой точке $(x,t)\in D.$

Замечание 4. В этом определении мы не накладываем на решение условие ограниченности, т.е. решение может иметь особенность на границе области.

В дальнейшем, если не оговорено противное, мы понимаем решение в смысле этого определения.

§ 4. Слабый принцип максимума

Справедливо важное утверждение, называемое слабым принципом максимума.

Лемма 1. Предположим, что либо Lu>0 всюду в D, либо $Lu\geqslant 0$ и c(x,t)<0 всюду в D. Тогда u(x,t) не может иметь положительного локального максимума в D.

Доказательство.

Пусть u=u(x,t) имеет положительный локальный максимум в точке $P_0=z_0=(x_0,t_0)\in D.$ Докажем, что

$$\sum_{i,j=1,1}^{N,N} a_{ij}(x_0, t_0) \frac{\partial^2 u(x_0, t_0)}{\partial x_i \partial x_j} \leqslant 0.$$

$$(4.1)$$

В самом деле, линейным преобразованием $y = \hat{C}z$ область D преобразуется в область D^* , а неравенство (4.1) преобразуется в неравенство

$$\sum_{i,j=1,1}^{N,N} b_{ij} \frac{\partial^2 v(y_0)}{\partial y_i \partial y_j} \le 0, \tag{4.2}$$

где

$$v(y) = u(z), \quad y_0 = \widehat{C}z_0, \quad (b_{ij}) = \widehat{C}(a_{ij})\widehat{C}^T,$$

 $z = (x, t), \quad z_0 = (x_0, t_0), \quad y = (x^*, t^*), \quad y_0 = (x_0^*, t_0^*).$

Если выбрать матрицу \widehat{C} так, чтобы b_{ij} была единичной матрицей,

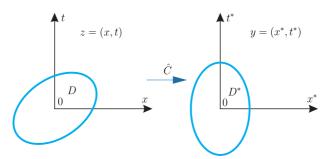


Рис. 6. Отображение области D в область D^* .

и замечая, что $v(y_0)$ тоже положительный максимум v(y) в D^* и, следовательно, выполнено неравенство

$$\frac{\partial^2 v(y_0)}{\partial y_i^2} \leqslant 0 \Rightarrow \sum_{i,j=1,1}^{N,N} b_{ij} \frac{\partial^2 v(y_0)}{\partial y_i \partial y_j} \leqslant 0.$$

Следовательно, выполнено неравенство (4.1). Наконец, в точке $P_0 = (x_0, t_0)$ выполнены необходимые условия экстремума

$$\frac{\partial u(x_0, t_0)}{\partial x_i} = 0, \quad \frac{\partial u(x_0, t_0)}{\partial t} = 0.$$

Следовательно, выполнено неравенство

$$Lu(x_0, t_0) \le c(x_0, t_0)u(x_0, t_0).$$
 (4.3)

Поскольку $u(x_0,t_0)>0$, то мы приходим к противоречию в неравенстве (4.3) в каждом из двух случаев

$$Lu>0$$
 и $c(x,t)\leqslant 0$ либо $Lu(x,t)\geqslant 0$ и $c(x,t)<0$.

Лемма доказана.

Приложение слабого принципа максимума. В качестве приложения слабого принципа максимума рассмотрим вопрос о единственности решения следующей первой краевой задачи:

$$Lu(x,t) = f(x,t,u,D_x u) \quad \text{B} \quad D \cup B_T, \tag{4.4}$$

$$u(x,t) = \psi(x,t)$$
 ha $\overline{B} \cup S$, (4.5)

где $D_x=(\partial_{x_1},...,\partial_{x_N}).$ Будем предполагать, что функция $f=f(x,t,p,p_1,...,p_N)$ определена на множестве $(D\cup B_T)\otimes \mathbb{R}^1\otimes \mathbb{R}^N.$ Справедлива следующая теорема единственности:

Те о р е м а 1. Пусть L — это параболический оператор c коэффициентами $a_{ij}(x,t), b_i(x,t), c(x,t) \in \mathbb{C}_b(D \cup B_T)$ (непрерывные и ограниченные на множестве $D \cup B_T$), и пусть $f(x,t,p,p_1,...,p_N)$ является неубывающей по переменной $p \in \mathbb{R}^1$ функцией. Тогда существует не более одного решения задачи (4.4), (4.5).

Доказательство.

Шае 1. Сначала мы рассмотрим случай $c(x,t)\leqslant 0$ и функция $f=f(x,t,p,p_1,...,p_N)$ является строго возрастающей по $p\in\mathbb{R}^1.$

Предположим, что $u_1(x,t)$ и $u_2(x,t)$ — это два решения задачи (4.4) и (4.5). Если

$$u_1(x,t) \not\equiv u_2(x,t),$$

то можно предположить, что

$$u_1(x,t) > u_2(x,t)$$
 в некоторых точках D .

Поэтому функция

$$u(x,t) \stackrel{def:}{=} u_1(x,t) - u_2(x,t)$$

будет иметь положительный максимум в $D \cup B_T$. Обозначим через $P_0 = (x_0, t_0)$ точку, где достигается максимум. Ясно, что

$$D_x u_1(P_0) = D_x u_2(P_0), \quad u_1(P_0) > u_2(P_0).$$

Поэтому мы получаем, что

$$Lu(P_0) = f(x_0, t_0, u_1(x_0, t_0), D_x u_1(x_0, t_0)) - f(x_0, t_0, u_2(x_0, t_0), D_x u_2(x_0, t_0)) > 0.$$

С другой стороны, при доказательстве слабого принципа максимума мы доказали, что

$$Lu(P_0) \leqslant 0$$

в каждой точке $P_0=(x_0,t_0)\in D\cup B_T$, в которой u(x,t) имеет положительный максимум. Пришли к противоречию.

Шаг 2. Чтобы доказать теорему в общем случае, сделаем преобразование

$$v(x,t) = e^{-\lambda t} u(x,t),$$

которое переводит уравнение (4.4) в следующее:

$$\begin{split} (L-c(x,t)I)v(x,t) &= \widehat{f}(x,t,v,D_xv) \overset{def:}{=} \\ &= f(x,t,ve^{\lambda t},e^{\lambda t}D_xv)e^{-\lambda t} + (\lambda - c(x,t))v. \end{split}$$

Выберем

$$\lambda > \sup_{(x,t) \in D} c(x,t),$$

тогда функция $\widehat{f}(x,t,v,D_xv)$ будет строго возрастающей по v, а коэффициент при v(x,t) в выражении

$$(L - c(x, t)I)v(x, t)$$

равен нулю. Таким образом, осталось применить результат, полученный на первом шаге.

Теорема доказана.

§ 5. Слабый принцип максимума ограниченного решения в цилиндрической области

Рассмотрим частный случай цилиндрической ограниченной области $D=\Omega\otimes (0,T),\ \Omega\subset \mathbb{R}^N.$ Кроме того, сделаем существенное предположение относительно решения u(x,t).

Определение ограниченного решения. Назовем функцию u(x,t) ограниченным решением, если она является ограниченной и непрерывной в $\overline{D}=\overline{\Omega}\otimes [0,T]$, функции $u_{x_i}(x,t)$ и $u_{x_ix_j}(x,t)$ для каждого $t \in [0,T]$ являются непрерывными в Ω и в любой точке Dсуществует производная $u_t(x,t)$.

Справедлив следующий принцип максимума: Теорема 2. Пусть $\Omega \subset \mathbb{R}^N$ — ограниченная область, выполнены условия (А), (В) и (С) относительно коэффициентов параболического оператора L в области D. Если

$$Lu(x,t)\geqslant 0$$
 ε $(x,t)\in D,$ (5.1)

 $u(x,t) \leqslant 0$ npu $(x,t) \in \partial'' D \equiv \overline{\Omega} \otimes \{t=0\} \cup \partial \Omega \otimes (0,T)^{-1}$. Тогда $u(x,t) \leqslant 0$ в D.

Доказательство.

Шаг 1. Выберем константу $\gamma > 0$ и определим следующую функ-

$$v(x,t) = u(x,t) - \frac{\gamma}{T-t}.$$
(5.3)

Пусть z_{γ} — это точка в \overline{D} , в которой v(x,t) принимает максимальное значение. Прежде всего заметим, что в силу ограниченности решения u(x,t) в D

$$v(z) \to -\infty$$
 при $z \to B_T = \{x \in \Omega, t = T\}.$

Поэтому $z_{\gamma}\notin B_T$ и $z_{\gamma}\in D\cup\partial'D$. Шаг 2. Если $v(z_{\gamma})\geqslant 0$, то z_{γ} не может лежать в D, т. е. быть внутренней точкой цилиндрической области D.

□ Действительно, в противном случае (как и ранее при доказательстве слабого принципа максимума в лемме 1) имеем

$$\sum_{i,j=1,1}^{N,N} a_{ij}(z_{\gamma}) \frac{\partial^2 v(z_{\gamma})}{\partial x_i \partial x_j} \leqslant 0, \quad v_t(z_{\gamma}) = v_{x_i}(z_{\gamma}) = 0, \quad i = \overline{1, N}.$$

Поэтому в точке z_{γ} выполнена следующая цепочка неравенств:

$$0 \leqslant Lu(x,t) = \sum_{i,j=1,1}^{N,N} a_{ij}(z_{\gamma}) \frac{\partial^{2}v(z_{\gamma})}{\partial x_{i}\partial x_{j}} + \sum_{i=1}^{N} b_{i}(z_{\gamma}) \frac{\partial v(z_{\gamma})}{\partial x_{i}} + c(z_{\gamma})u(z_{\gamma}) - v_{t}(z_{\gamma}) - \frac{\gamma}{(T-t)^{2}} \leqslant c(z_{\gamma})u(z_{\gamma}) - \frac{\gamma}{(T-t)^{2}} \leqslant \frac{\gamma}{(T-t)^{2}} + c(z_{\gamma})v(z_{\gamma}) + c(z_{\gamma})\frac{\gamma}{T-t} \leqslant -\frac{\gamma}{(T-t)^{2}} + c(z_{\gamma})\frac{\gamma}{T-t} \leqslant 0. \quad \boxtimes$$

Шаг 3. Полученное противоречие доказывает, что либо $v(z_\gamma) < 0$ в D либо $z_{\gamma} \in \partial' D$ и тогда в силу (5.2) имеем $v(z_{\gamma}) \leqslant 0$. Итак, в любом

$$v(x,t)\leqslant v(z_{\gamma})\leqslant 0$$
 в $D\Rightarrow u(x,t)\leqslant rac{\gamma}{T-t}$ для всех $(x,t)\in D.$

Поскольку u(x,t) не зависит от произвольного $\gamma>0$, то для всякого фиксированного $(x,t) \in D$ устремим $\gamma \to +0$ и получим неравенство

$$u(x,t)\leqslant 0$$
 для всех $(x,t)\in D.$

Теорема доказана.

 $^{^{1}}$) Граница $\partial^{''}D\subset\partial^{'}D$ и поэтому отличается от параболической или нормальной границы $\partial' D$

Теперь рассмотрим обобщение этой теоремы на случай неограниченной области. Итак, справедлива следующая теорема:

Теорема 3. Пусть выполнены условия (A), (B), (C) и коэффициенты оператора L являются ограниченными функциями в D. Если

$$Lu(x,t) \geqslant 0 \quad \mathbf{\varepsilon} \quad (x,t) \in D,$$
 (5.4)

$$u(x,t) \leqslant 0$$
 на $\partial'' D \equiv \{x \in \overline{\Omega}, t = 0\} \cup \{x \in \partial\Omega, t \in (0,T)\}.$ (5.5)

Тогда $u(x,t) \leqslant 0$ в D.

Доказательство.

Шаг 1. Рассмотрим следующую функцию:

$$v_0(x,t) = \operatorname{ch}(|x|) \exp(\lambda t), \quad \lambda > 0. \tag{5.6}$$

Непосредственно можно проверить, что выполнено неравенство

$$Lv_0(x,t) \leqslant 0 \tag{5.7}$$

для достаточно большой константы $\lambda > 0$.

Шаг 2. Положим

$$m = \sup_{(x,t)\in D} |u(x,t)|, \quad D_{T,R} \stackrel{def:}{=} [\Omega \cap B_R] \otimes (0,T), \tag{5.8}$$

где $B_R = \{x \in \mathbb{R}^N: \; |x| < R\}.$ Тогда функция

$$w_R(x,t) = u(x,t) - v_0(x,t) \frac{m}{\operatorname{ch}(R)}$$
 (5.9)

удовлетворяет следующим условиям:

$$w_R(x,t) \leqslant 0 \tag{5.10}$$

для всех

$$(x,t) \in \partial' D_{T,R} = \{\overline{\Omega} \cap \overline{B}_R, \ t = 0\} \cup \{\partial \Omega \cap \partial B_R, \ t \in (0,T)\}.$$

 \Box Действительно, в силу условия (5.5) $u(x,t)\leqslant 0$ на $\partial^{'}D,$ а при $x\in\partial B_{R}$ имеем

$$w_R(x,t)\Big|_{|x|=R} = (u(x,t)-m)\Big|_{|x|=R} \leqslant 0.$$

С другой стороны, в силу условия (5.4) и (5.7) имеем

$$Lw_R(x,t) \geqslant 0. (5.11)$$

В силу ограниченности области $D_{T,R}$ выполнен результат теоремы 2

$$w_R(x,t) \leqslant 0$$
 при $(x,t) \in D_{T,R} \Rightarrow u(x,t) \leqslant v_0(x,t) \frac{m}{\operatorname{ch} R}$

Переходя к пределу при $R \to +\infty$ получим результат теоремы. Теорема доказана.

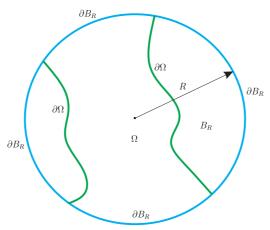


Рис. 7. Множество $\Omega \cap B_R$.

3 а м е ч а н и е 5. Заметим, что в формулировке теорем 2 и 3 мы используем понятие ограниченного решения, а именно условие, что решение u(x,t) ограничено в рассматриваемой цилиндрической области. Тем самым, если решение только непрерывно в области и может иметь особенность на границе области исключен из рассмотрения.

§ 6. Сильный принцип максимума

Доказательство основного утверждения этого параграфа — принципа максимума, мы будем проводить для произвольной области $D \subset \mathbb{R}^{N+1}$. Нам потребуются новые понятия. Поэтому введем обозначения.

Обозначения. Пусть $P_0=(x_0,t_0)$ — любая точка из D. Обозначим через $S(P_0)$ множество всех точек $Q=\{(x,t)\}$ в D, таких, что их можно соединить с P_0 простой непрерывной кривой, лежащей в D, вдоль которой координата t не убывает от Q к P_0 . Через $C(P_0)$ мы обозначим компоненту пересечения $D\cap\{t=t_0\}$, которая содержит P_0 . Заметим, что $S(P_0)\supset C(P_0)$.

Теперь мы можем сформулировать основное утверждение этой лекции, называемое сильным принципом максимума.

Те о р е м а 4. Пусть выполнены условия (A), (B) и (C). Если $Lu\geqslant 0$ $(Lu\leqslant 0)$ в D и если u(x,t) имеет в D положительный локальный максимум (отрицательный локальный минимум), который достигается в точке $P_0=(x_0,t_0)\in D$, то $u(P)=u(P_0)$ для всех $P\in S(P_0)$.

Доказательство теоремы. Для того чтобы доказать эту важную теорему нам нужно доказать ряд вспомогательных лемм.

Этап I. Докажем следующее утверждение: Лемма 2. Пусть $Lu\geqslant 0$ в D, и пусть u(x,t) имеет положительный локальный максимум M в D. Предположим, что D содержит

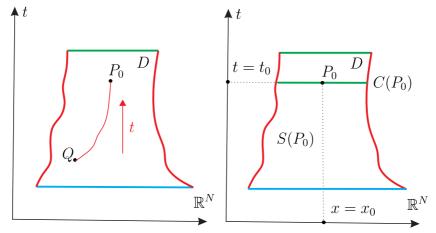


Рис. 8. Множества $S(P_0)$ и $C(P_0)$.

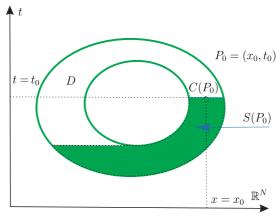


Рис. 9. Множества $S(P_0)$ и $C(P_0)$ в случае «гладкой» двусвязной области D.

замкнутый эллипсоид E:

$$\sum_{i=1}^{N} \lambda_i (x_i - x_i^*)^2 + \lambda_0 (t - t^*)^2 \leqslant R^2, \quad \lambda_i > 0, \quad R > 0, \quad i = \overline{1, N}$$

и что u(x,t) < M во внутренних точках $(x,t) \in E$ и $u(\overline{x},\overline{t}) = M$ в некоторой точке $\overline{P} = (\overline{x},\overline{t})$ на границе ∂E эллипсоида E. Тогда $\overline{x} =$ $=x^*,\ e\partial e\ x^*=(x_1^*,...,x_N^*).$ Доказательство.

Шае 1. Без ограничения общности можно считать, что $\overline{P}=(\overline{x},\overline{t})$ — это единственная точка на ∂E , в которой $u(\overline{x},\overline{t})=M$, так как в

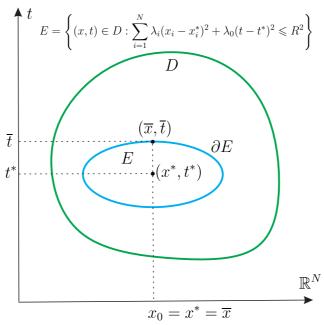


Рис. 10. Эллипсоид E в формулировке леммы 2.

противном случае 1) мы можем взять меньший замкнутый эллипсоид e, лежащий в E и имеющий единственную общую точку \overline{P} с ∂E (см. рисунок 15).

Шае 2. Предположим, что $\overline{x} \neq x^*$, и пусть C — замкнутый (N+1)—мерный шар, содержащийся в D с центром в точке $\overline{P}=(\overline{x},\overline{t})$ и радиусом меньшим, чем $|\overline{x}-x^*|$. Тогда

$$|x - x^*| \geqslant const > 0$$
 для всех $(x, t) \in C$. (6.1)

Граница шара C состоит из части $\partial C_1 \subset E$, и части ∂C_2 , лежащей вне эллипсоида E (см. рисунок 16). Очевидно, что для некоторого $\delta>0$ выполнено неравенство

$$u(x,t) < M - \delta$$
 при $(x,t) \in \partial C_1$, (6.2)

поскольку по построению эллипсоида $E\subset D$ максимум M функции u(x,t) достигается только в точке $\overline{P}=(\overline{x},\overline{t})\in\partial E$ (см. шаг 1).

Шаг 3. Введем следующую функцию:

$$h(x,t) = \exp \left\{ -\alpha \left[\sum_{i=1}^{N} \lambda_i (x_i - x_i^*)^2 + \lambda_0 (t - t^*)^2 \right] \right\} -$$

 $^{^{1})}$ Заметим, что u(x,t) < M во всех внутренних точках эллипсоида E .

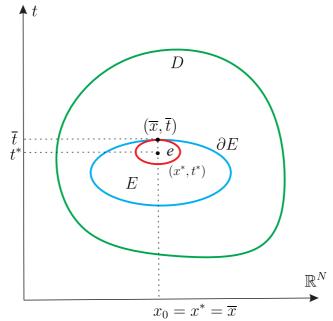
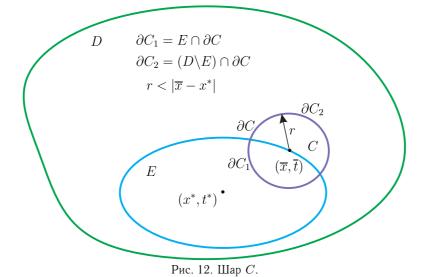


Рис. 11. Вложенный эллипсоид $\it e$.



 $-\exp\left[-\alpha R^2\right], \quad \alpha > 0. \quad (6.3)$

Заметим, что по построению функция h=h(x,t)>0 внутри E и равна нулю на границе ∂E и меньше нуля при $(x,t)\in D\backslash E$, т. е. вне замкнутого эллипсоида E. Кроме того, заметим, что

$$\exp\left\{\alpha \left[\sum_{i=1}^{N} \lambda_{i} (x_{i} - x_{i}^{*})^{2} + \lambda_{0} (t - t^{*})^{2}\right]\right\} Lh(x, t) =$$

$$= \left\{4\alpha^{2} \sum_{i,j=1,1}^{N,N} a_{ij}(x, t) \lambda_{i} \lambda_{j} (x_{i} - x_{i}^{*}) (x_{j} - x_{j}^{*}) - 2\alpha \left[\sum_{i=1}^{N} a_{ij}(x, t) \lambda_{i} + \sum_{i=1}^{N} b_{i}(x, t) \lambda_{i} (x_{i} - x_{i}^{*}) - \lambda_{0} (t - t^{*})\right] + c(x, t)\right\} -$$

$$- c(x, t) \exp\left[-\alpha R^{2}\right] \exp\left\{\alpha \left[\sum_{i=1}^{N} \lambda_{i} (x_{i} - x_{i}^{*})^{2} + \lambda_{0} (t - t^{*})^{2}\right]\right\}. \quad (6.4)$$

Поскольку в шаре C выполнено неравенство (6.1), то первое слагаемое в фигурных скобках в равенстве (6.4) положительно при достаточно большом $\alpha>0$ будет больше нуля. Последний член больше или равен нуля, так как $c(x,t)\leqslant 0$. Итак,

$$Lh(x,t) > 0 \quad \text{B} \quad C. \tag{6.5}$$

Uаг 4. Рассмотрим теперь в шаре C функцию

$$v(x,t) = u(x,t) + \varepsilon h(x,t)$$
 при $\varepsilon > 0$. (6.6)

Если $\varepsilon>0$ достаточно малое, то v(x,t)< M на ∂C_1 в силу (6.2). На ∂C_2 функция $u(x,t)\leqslant M^{-1}$ и h(x,t)<0, поэтому v(x,t)< M. Таким образом,

$$v(x,t) < M$$
 на ∂C (6.7)

при малом $\varepsilon > 0$. Кроме того,

$$h(\overline{P}) = 0 \Rightarrow v(\overline{P}) = u(\overline{P}) = M.$$
 (6.8)

Отсюда заключаем, что v(x,t) < M на границе шара C и принимает максимальное положительное значение M в центре шара $\overline{P} = (\overline{x},\overline{t}).$ При этом выполнено неравенство (6.5). Следовательно, мы пришли в противоречие со слабым принципом максимума (см. лемму 1). Значит, имеет место равенство $\overline{x} = x^*.$

Лемма доказана.

Этап II. Теперь мы докажем следующую лемму:

 $^{^{\}rm I)}$ Это справедливо, поскольку, с одной стороны, M>0 — это локальный максимум в области D, а с другой стороны, радиус r>0 шара C может быть выбран малым.

Лемма 3. Если $Lu\geqslant 0$ в области D и если u(x,t) имеет положительный максимум в D, который достигается в точке $P_0==(x_0,t_0)\in D$, то $u(P)=u(P_0)$ для всех $P\in C(P_0)$.

Доказательство.

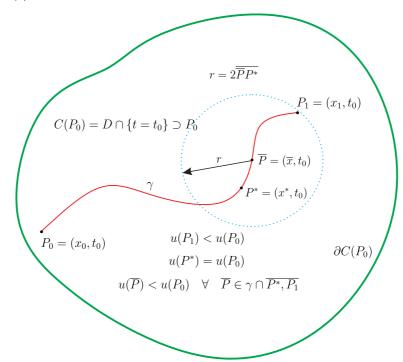


Рис. 13. Кривая $\gamma \in C(P_0)$.

Шаг 1. Пусть утверждение леммы неверно. Тогда в $C(P_0)$ найдется точка $P_1=(x_1,t_0)$, в которой $u(P_1)< u(P_0)$. Соединим P_1 с P_0 простой непрерывной кривой $\gamma\subset C(P_0)$. На γ существует точка $P^*=(x^*,t_0)$, в которой $u(P^*)=u(P_0)$, и такая, что $u(\overline{P})< u(P_0)$ для всех $\overline{P}=(\overline{x},t)$, лежащих на γ между P_1 и P^* .

лежащих на γ между P_1 и P^* . Возьмем точку \overline{P} на γ между P_1 и P^* так 1), чтобы расстояние $d(\overline{P},\partial C(P_0))$ до границы $\partial C(P_0)$ удовлетворяло неравенству

$$d(\overline{P}, \partial C(P_0)) \geqslant 2\overline{\overline{P}P^*}.$$
 (6.9)

Шаг 2. Поскольку $u(\overline{P}) < u(P^*)$, существует достаточно малый замкнутый интервал σ_0 , определяемый соотношениями

$$\sigma_0 \stackrel{def:}{=} \{ x = \overline{x}, \quad t_0 - \varepsilon \leqslant t \leqslant t_0 + \varepsilon \}, \tag{6.10}$$

 $^{^{1})}$ Просто нужно взять точку \overline{P} достаточно близкой к точке $P^{*}.$

для всех точек $P \in \sigma_0$ которого

$$u(P) < u(P^*).$$
 (6.11)

Рассмотрим семейство эллипсоидов E_{λ} :

$$|x - \overline{x}|^2 + \lambda (t - t_0)^2 \leqslant \lambda \varepsilon^2. \tag{6.12}$$

Прежде всего заметим, что концы интервала σ_0 будут лежать на границе эллипсоида $E_\lambda.$

 \Box Действительно, положим $x=\overline{x}$ в уравнении эллипсоида E_{λ} и получим неравенство

$$|t - t_0| \leqslant \varepsilon \Rightarrow (x = \overline{x}, t) \in \sigma_0.$$

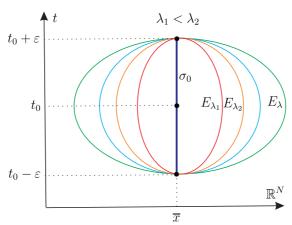


Рис. 14. Семейство E_{λ} и интервал σ_{0} .

Кроме того, нетрудно убедиться в том, что справедливо предельное свойство (см. рисунок 18)

$$E_{\lambda} \to \sigma_0$$
 при $\lambda \to +0$. (6.13)

С другой стороны, при $t=t_0$ имеем

$$E_{\lambda} \cap \{t = t_0\} = \left\{ (x, t_0) : x \in \mathbb{R}^N, |x - \overline{x}| \leqslant \lambda \varepsilon^2 \right\}.$$

Поэтому при возрастании $\lambda>0$ пересечение $E_\lambda\cap\{t=t_0\}$ неограниченно возрастает.

Следовательно, в силу неравенства (6.11) существует такое минимальное $\lambda = \lambda_0 > 0$, что $u < u(P^*)$ внутри E_{λ_0} и $u = u(P^*)$ в некоторой точке $Q = (u, t_0) \in \partial E_{\lambda_0}$.

точке $Q=(y,t_0)\in \partial E_{\lambda_0}.$ В силу (6.11) точка Q не может принадлежать интервалу σ_0 и поэтому $y\neq \overline{x},$ но это противоречит результату леммы 2

Лемма доказана.

Этап III. Докажем теперь следующее утверждение:

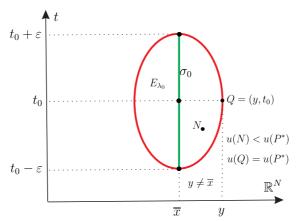


Рис. 15. Минимальный эллипсоид E_{λ_0} .

 Π емма 4. Π усть R — параллелепипед

$$x_{0i} - a_i \leqslant x_i \leqslant x_{0i} + a_i, \quad t_0 - a_0 \leqslant t \leqslant t_0, \quad i = 1, 2, ..., N,$$
 (6.14)

содержащийся в D, 1) и пусть $Lu\geqslant 0$ в D. Если u(x,t) имеет положительный максимум в R, который достигается в точке $P_{0}==(x_{0},t_{0})\in D$, где $x_{0}=(x_{10},...,x_{N0})$, тогда $u(P)=u(P_{0})$ для всех $P\in R$.

Доказательство.

Шаг 1. Предположим, что лемма неверна. Тогда в параллелепипеде R должна найтись точка $Q \in R$, такая, что $u(Q) < u(P_0)$. Поскольку $u(x,t) < u(P_0)$ также и в некоторой окрестности Q, можно предполагать, что точка Q не лежит на гиперплоскости $t=t_0$.

На отрезке γ , соединяющем Q с P_0 существует точка P_1 , такая, что $u(P_1)=u(P_0)$ и

$$u(\overline{P}) < u(P_1)$$
 для всех $\overline{P} \in \gamma_{Q,P_1}$

Можно считать, что $P_1=P_0$ и точка Q лежит на гиперплоскости $t=t_0-a_0$, поскольку в противном случае можно взять меньший параллелепипед.

Шаг 2. Пусть R_0 обозначается параллелепипед R без верхней грани $t=t_0$. Для каждой точки $Q^{'}\in R_0$ компонента $C(Q^{'})$ содержит некоторую точку из γ , но $u< u(P_0)$ в точках γ . Поэтому если в некоторой точке $Q^{'}$ будет выполнено равенство $u(Q^{'})=u(P_0)$, то в силу предыдущей леммы мы бы имели, что $u(Q^{'})=u(P_0)$ для всех $Q^{'}\in C(Q^{'})$.

 $^{^{1}}$) Для этого достаточно взять числа $a_{i}>0$ и $a_{0}>0$ достаточно малыми, поскольку точка P_{0} внутренняя в D.

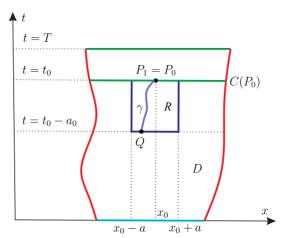


Рис. 16. Кривая γ и точка Q.

Следовательно, в каждой точке $Q^{'} \in R_{0}$ выполнено следующее неравенство:

$$u(Q^{'}) < u(P_0)$$
 для всех $Q^{'} \in R_0$. (6.15)

Шаг 3. Введем функцию

$$h(x,t) = t_0 - t - K|x - x_0|^2, \quad K > 0.$$
 (6.16)

На параболоиде

$$M: \quad t_0 - t = K|x - x_0|^2$$

имеем h(x,t)=0; выше параболоида M функция h(x,t)<0, а ниже параболоида M имеем h(x,t)>0. Кроме того, непосредственным вы-

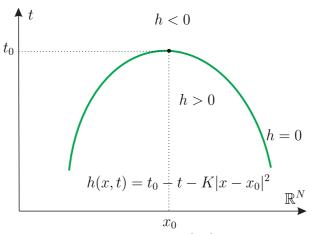


Рис. 17. Параболоид h(x,t) = 0.

числением получим, что

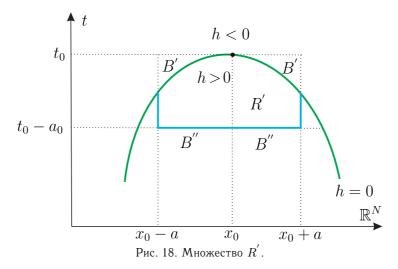
$$Lh(x,t) = -2K \sum_{i=1}^{N} a_{ii}(x,t) - 2K \sum_{i=1}^{N} b_{i}(x,t)(x_{i} - x_{0i}) + c(x,t) \left[t_{0} - t - K|x - x_{0}|^{2} \right] + 1 > 0 \quad \text{B} \quad R, \quad (6.17)$$

если потребовать, чтобы K>0 было мало настолько, что

$$4K\sum_{i=1}^N a_{ii}(x,t)\leqslant 1\quad \text{B}\quad R$$

и размеры параллелепипеда R достаточно малы.

Шаг 4. Параболоид M разбивает параллелепипед R на две части. Обозначим часть, лежащую ниже параболоида M (h>0) через R'. Верхняя граница B' множества R' касается гиперплоскости $t=t_0$ только в точке $P_0=(x_0,t_0)$. Поэтому на остальной части B'' границы



 $R^{'}$ получим

$$u(x,t) \leqslant u(P_0) - \delta$$
 для некоторого $\delta > 0$.

Отсюда следует, что для функции

$$v(x,t) \stackrel{\text{def:}}{=} u(x,t) + \varepsilon h(x,t)$$
 (6.18)

имеем

$$v(x,t) < u(P_0)$$
 при $(x,t) \in B^{''}$ (6.19)

для любого достаточно малого $\varepsilon>0$. Далее во всех точках верхней границы $B^{'}$ за исключением точки P_{0} , имеем

$$v(x,t) = u(x,t) < u(P_0), \quad v(P_0) = u(P_0).$$
 (6.20)

Поскольку

$$Lv(x,t) = Lu(x,t) + \varepsilon Lh(x,t) > 0$$
 при $(x,t) \in R^{'}$,

то в силу леммы 1 заключаем, что положительный максимум функции v(x,t) достигается в точке P_0 . Следовательно $^1)$,

$$\frac{\partial v(P_0)}{\partial t} \geqslant 0, \quad \frac{\partial h(P_0)}{\partial t} = -1 < 0 \Rightarrow \frac{\partial u(P_0)}{\partial t} > 0.$$
 (6.21)

Замечание 6. Докажем неравенство

$$\frac{\partial v(P_0)}{\partial t} \geqslant 0.$$

Действительно, поскольку функция v(x,t) дифференцируема в окрестности точки P_0 и в этой точке у функции v(x,t) строгий максимум, то при $t < t_0$ выполнено неравенство

$$\frac{v(x_0, t_0) - v(x_0, t)}{t_0 - t} > 0 \Rightarrow \frac{\partial v(P_0)}{\partial t} \geqslant 0.$$

С другой стороны, из предположения, что u(x,t) достигает положительного максимума в точке P_0 находим, что

$$\frac{\partial u(P_0)}{\partial x_i} = 0, \quad c(P_0)u(P_0) \leqslant 0, \quad \sum_{i,j=1}^{N,N} a_{ij}(x_0, t_0) \frac{\partial^2 u(x_0, t_0)}{\partial x_i \partial x_j} \leqslant 0.$$

Следовательно,

$$0 \leqslant Lu(P_0) \leqslant -\frac{\partial u(P_0)}{\partial t} \Rightarrow \frac{\partial u(P_0)}{\partial t} \leqslant 0,$$

что противоречит неравенству (6.21).

Лемма доказана.

Этап IV. Теперь мы можем доказать утверждение теоремы 4. *Шаг 1*. Предположим, что

$$u(x,t) \not\equiv u(P_0)$$
 B $S(P_0)$.

Тогда найдется такая точка $Q \in S(P_0)$, что $u(Q) < u(P_0)$. Соединим точки Q и P_0 простой непрерывной кривой γ , расположенной в $S(P_0)$ так, чтобы t-координата не убывает от точки Q к точке P_0 (такая кри-

 $^{^{1})}$ Неравенство $\partial v(P_{0})/\partial t\geqslant 0$ выполнено, поскольку производная берется по времени в сторону возрастания времени, а в точке P_{0} у функции v(x,t) максимум.

вая существует согласно определению $S(P_0)$). На кривой γ существует точка P_1 , в которой $u(P_1)=u(P_0)$ и

$$u(\overline{P}) < u(P_1)$$
 для всех точек $\overline{P} \in \gamma_{Q,P_1}$,

где мы обозначили через γ_{Q,P_1} часть кривой γ между Q и P_1 . Шаг 2. Теперь построим параллелепипед

$$x_{1i} - a \leqslant x_i \leqslant x_{1i} + a$$
, $t_1 - a < t \leqslant t_1$, $i = \overline{1, N}$,

где $P_1=(x_{11},...,x_{1N},t_1)$ и постоянная a>0 настолько мала, что параллелепипед лежит в D. Из леммы 4 вытекает, что $u\equiv u(P_1)$ в этом параллелепипеде, а поэтому и на части кривой γ_{Q,P_1} , попадающей в параллелепипед. Пришли к противоречию.

Теорема доказана.

Замечание 7. Заметим, что если в операторе L коэффициент c(x,t)=0, то слова положительный максимум и отрицательный минимум можно заменить на максимум и минимум соответственно.

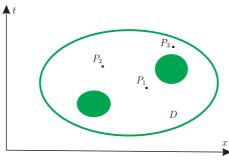


Рис. 19. К задаче 1.

Решение. На рисунке 26 изображено множество $C(P_1)$.

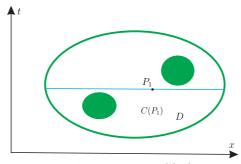


Рис. 20. Множество $C(P_1)$.

На рисунке 27 изображено множество $C(P_2)$.

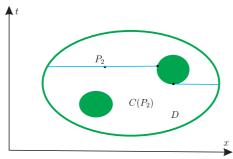


Рис. 21. Множество $C(P_2)$.

На рисунке 28 изображено множество $C(P_3)$.

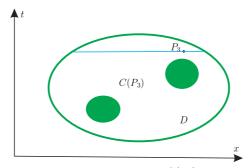


Рис. 22. Множество $C(P_3)$.

§ 7. Первая краевая задача

Напомним снова ряд обозначений, используемых в дальнейшем. Пусть D — ограниченная (N+1)—мерная область в \mathbb{R}^{N+1} , и пусть $(x,t)=(x_1,...,x_N,t)$ — переменная точка в \mathbb{R}^{N+1} . Предположим, что граница ∂D области D состоит из замыкания области B, лежащей на гиперплоскости t=0, области B_T , лежащей на гиперплоскости t=T>0, и многообразия S (не обязательно связного), лежащего в полосе $0< t \leqslant T$.

Определение 1. Множество $\partial' D \equiv S \cup \overline{B}$ называется нормальной границей области D.

Введем обозначения

$$D_{\tau} = D \cap \{0 < t < \tau\}, \quad B_{\tau} = D \cap \{t = \tau\}, \quad S_{\tau} = S \cap \{0 < t \le \tau\}.$$

Допустим, что для каждого τ , $0 < \tau < T$, B_{τ} — область (связное открытое множество). В частности, на рисунке 23 область D не удо-

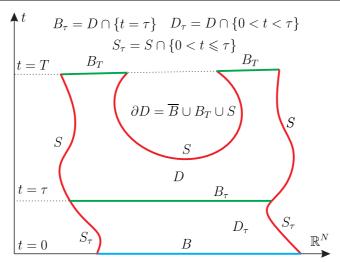


Рис. 23. Область D и ее подмножества.

влетворяет этому условию, поскольку для некоторого au_0 множество $B_{ au_0}$ — не связно. А область, изображенная на рисунке 9, удовлетворяет этому условию.

Напомним постановку первой краевой задачи.

Определение 2. Первая краевая задача состоит в нахождении решения уравнения

$$Lu(x,t) = f(x,t) \quad \mathbf{s} \quad D \cup B_T,$$
 (7.1)

удовлетворяющего начальным условиям

$$u(x,0) = \varphi(x)$$
 на \overline{B} (7.2)

и граничным условиям

$$u(x,t) = g(x,t) \quad \text{ha} \quad S, \tag{7.3}$$

где f, φ, g — это заданные функции и L — параболический оператор.

Замечание 8. Условия (7.2) и (7.3) можно объединить в одно

$$u(x,t) = h(x,t)$$
 на $\overline{B} \cup S$. (7.4)

Функцию h(x,t) мы будем считать непрерывной на множестве $\overline{B} \cup S$, а решение u(x,t) — непрерывной на \overline{D} , имеющей в $D \cup B_T$ непрерывные производные по x до второго порядка включительно, по t — первого порядка.

Справедлива следующая теорема:

Tеорема 5. Пусть оператор L удовлетворяет условиям (A) u (B). Тогда может существовать не более одного решения первой краевой задачи.

Доказательство.

Шаг 1. Пусть сначала $c(x,t)\leqslant 0$ и $u_1(x,t),\ u_2(x,t)$ — это два решения первой краевой задачи (7.1)—(7.3). Тогда для функции

$$v(x,t) = u_1(x,t) - u_2(x,t)$$

мы получим соответствующую однородную задачу. Следовательно, одновременно

$$Lv(x,t)\geqslant 0$$
 в D и $v(x,t)\leqslant 0$ на $\partial^{'}D,$ (7.5)

$$Lv(x,t) \leqslant 0$$
 в D и $v(x,t) \geqslant 0$ на $\partial' D$. (7.6)

Следовательно, в силу теоремы 2 из (7.5) имеем $v(x,t)\leqslant 0$ в D, а из (7.6) в силу той же теоремы мы получим, что $v(x,t)\geqslant 0$ в D. Значит, v(x,t)=0 в D.

Шаг 2. Пусть теперь функция c(x,t) может быть положительной в области D. Положим по определению

$$c_0 \stackrel{def:}{=} \sup_{(x,t)\in D} c(x,t) > 0.$$

Тогда перейдем к новой функции w(x,t) следующего вида:

$$w(x,t) = e^{-c_0 t} u(x,t).$$

При этом уравнение Lu(x,t)=0 перейдет в уравнение $(L-c_0)w(x,t)=0$, в котором уже новый коэффициент $c(x,t)-c_0\leqslant 0$. Далее рассуждаем как на шаге 1.

Теорема доказана.

Пример неединственности. [?] Заметим, что требование ограниченности коэффициентов параболического оператора L является существенным для применения принципа максимума с целью доказательства единственности решения первой краевой задачи. Действительно, рассмотрим следующую задачу:

$$\frac{1}{t}u_{xx} + \frac{2}{t}u - u_t = 0 \quad \text{при} \quad t > 0, \quad x \in (0, \pi), \tag{7.7}$$

$$u(x,0) = 0$$
 при $0 \leqslant x \leqslant \pi$, (7.8)

$$u(0,t) = u(\pi,t) = 0$$
 при $t > 0$. (7.9)

Нетрудно проверить, что функция

$$u(x,t) = at \sin x$$
 для любой постоянной $a \in \mathbb{R}^1$

является решением однородной первой краевой задачи (7.7)-(7.9).

Нелинейный параболический оператор. Рассмотрим нелинейный дифференциальный оператор

$$Lu(x,t) \stackrel{\text{def:}}{=} F\left(x,t,u,\frac{\partial u}{\partial x_i},\frac{\partial^2 u}{\partial x_i\partial x_j}\right) - \frac{\partial u}{\partial t},\tag{7.10}$$

где $F=F(x,t,p,p_i,p_{ij})$ — это нелинейная функция своих аргументов. Определение 3. Нелинейный оператор L, определенный формулой (7.4), называется параболическим в точке $(x_0,t_0)\in D$, если для любых $p,p_1,...,p_N,p_{11},...,p_{NN}$ матрица

$$\left(\frac{\partial F(x_0, t_0, p, p_i, p_{ij})}{\partial p_{hk}}\right)$$
(7.11)

является положительно определенной.

Заметим, что если функция $F = F(x,t,p,p_i,p_{ij})$ является непрерывно дифференцируемой по переменным (p,p_i,p_{ij}) , то справедлива формула Адамара среднего значения следующего вида:

$$F(x, t, u, u_i, u_{ij}) - F(x, t, v, v_i, v_{ij}) =$$

$$= \sum_{i,j=1}^{N,N} a_{ij}(u_{ij} - v_{ij}) + \sum_{i=1}^{N} b_i(u_i - v_i) + c(u - v), \quad (7.12)$$

где

$$(a_{ij}, b_i, c) = \int_0^1 (F_{p_{ij}}, F_{p_i}, F_p) (x, t, su + (1 - s)v, su_i + (1 - s)v_i, su_{ij} + (1 - s)v_{ij}) ds.$$
(7.13)

Воспользовавшись формулой (7.12) мы можем распространить результат теоремы 5 на нелинейный случай.

Следствия из принципа максимума. Справедливы следующие утверждения:

Следствие 1. Пусть $D \subset \mathbb{R}^N$ — ограниченная область, справедливы свойства (A), (B) и (C) и выполнено равенство Lu(x,t)=0 при $(x,t)\in D$, тогда справедлива следующая оценка:

$$\max_{(x,t)\in\overline{D}}|u(x,t)| \leqslant \max_{(x,t)\in\overline{\partial'D}}|u(x,t)| \tag{7.14}$$

Доказательство.

Шаг 1. Введем следующее обозначение:

$$M = \max_{(x,t)\in \overline{\partial' D}} |u(x,t)|. \tag{7.15}$$

Тогда для новой функции

$$v(x,t) = u(x,t) - M$$

имеем

$$Lv(x,t)=-c(x,t)M\geqslant 0$$
 при $(x,t)\in D,$ $v(x,t)\leqslant 0$ при $(x,t)\in \partial^{'}D.$

Таким образом, в силу теоремы 2 получим, что

$$v(x,t)\leqslant 0$$
 при $(x,t)\in D\cup\partial^{'}D\Rightarrow u(x,t)\leqslant M$ при $(x,t)\in\partial^{'}D.$

Шаг 2. Поскольку функция -u(x,t) является решением уравнения L(-u)=0, то применяя результат шага 1 для функции -u(x,t) мы получим оценку

$$-u(x,t) \leqslant M$$
 при $(x,t) \in D \cup \partial' D$.

Следствие доказано.

Следствие 2. Пусть выполнены условия (A), (B) и $c(x,t)\leqslant c_0$ при $c_0>0$. Если Lu(x,t)=0 в D, то

$$\max_{(x,t)\in\overline{D}}|u(x,t)|\leqslant e^{c_0T}\max_{(x,t)\in\overline{\partial}'D}|u(x,t)|. \tag{7.16}$$

Доказательство.

Достаточно применить результат следствия 1 к функции

$$\begin{split} v(x,t) &= u(x,t)e^{-c_0t} \Rightarrow (L-c_0)v(x,t) = 0 \Rightarrow \\ &\Rightarrow \max_{(x,t)\in\overline{D}}|v(x,t)| \leqslant \max_{(x,t)\in\overline{\partial'}D}|v(x,t)| \Rightarrow \\ &\Rightarrow e^{-c_0T}\max_{(x,t)\in\overline{D}}|u(x,t)| \leqslant \max_{(x,t)\in\overline{\partial'}D}|u(x,t)| \end{split}$$

и получить неравенство.

Следствие доказано.

§ 8. Некоторые обобщения принципа максимума

Справедливо следующее важное утверждение:

Те ор е м а 6. Пусть выполнены условия сильного принципа максимума 4, но без требования $c(x,t) \leqslant 0$. Если $u(x,t) \leqslant 0$ ($u(x,t) \geqslant 0$) в области D и $u(P_0) = 0$ в точке $P_0 \in D$ и если $Lu(x,t) \leqslant 0$ ($Lu(x,t) \leqslant 0$) в D, то $u(x,t) \equiv 0$ в $C(P_0)$.

Доказательство. Достаточно рассмотреть случай $u(x,t)\leqslant 0$ и $Lu(x,t)\geqslant 0$ в D.

Шаг 1. Функция

$$v(x,t) = u(x,t) \exp\left[-\alpha x_1\right]$$
 при $\alpha > 0$

удовлетворяет следующему неравенству:

$$\widetilde{L}v(x,t) \stackrel{def:}{=} (L - c(x,t)I)v(x,t) + 2\alpha \sum_{i=1}^{N} a_{1i} \frac{\partial v(x,t)}{\partial x_i} \geqslant$$

$$\geqslant -\left(a_{11}(x,t)\alpha^2 + b_1(x,t)\alpha + c(x,t)\right)v(x,t). \quad (8.1)$$

□ Действительно, справедливы следующие равенства:

$$\sum_{i=1}^{N} b_i(x,t) \frac{\partial v(x,t)}{\partial x_i} = e^{-\alpha x_1} \sum_{i=1}^{N} b_i(x,t) \frac{\partial u(x,t)}{\partial x_i} - \alpha b_1(x,t) v(x,t),$$

$$\sum_{i,j=1,1}^{N,N} a_{ij}(x,t) \frac{\partial^2 v(x,t)}{\partial x_i \partial x_j} = e^{-\alpha x_1} \sum_{i,j=2,2}^{N,N} a_{ij}(x,t) \frac{\partial^2 u(x,t)}{\partial x_i \partial x_j} + a_{11}(x,t) \frac{\partial^2 v(x,t)}{\partial x_1^2} + 2 \sum_{i=2}^{N} a_{1i} \frac{\partial^2 v(x,t)}{\partial x_1 \partial x_i},$$

$$\begin{split} a_{11}(x,t)\frac{\partial^2 v(x,t)}{\partial x_1^2} &= -\alpha^2 a_{11}(x,t)v(x,t) + \\ &+ e^{-\alpha x_1}a_{11}(x,t)\frac{\partial^2 u(x,t)}{\partial x_1^2} - 2\alpha a_{11}(x,t)e^{-\alpha x_1}\frac{\partial u(x,t)}{\partial x_1}, \end{split}$$

$$2\sum_{i=2}^{N} a_{1i}(x,t) \frac{\partial^2 v(x,t)}{\partial x_1 \partial x_i} = 2e^{-\alpha x_1} \sum_{i=2}^{N} a_{1i}(x,t) \frac{\partial^2 u(x,t)}{\partial x_1 \partial x_i} - 2\alpha \sum_{i=2}^{N} a_{1i}(x,t) \frac{\partial v(x,t)}{\partial x_i},$$

$$2\alpha \sum_{i=1}^{N} a_{1i} \frac{\partial v(x,t)}{\partial x_i} = 2\alpha \sum_{i=2}^{N} a_{1i} \frac{\partial v(x,t)}{\partial x_i} + 2\alpha a_{11}(x,t) \frac{\partial v(x,t)}{\partial x_1} =$$

$$= 2\alpha \sum_{i=2}^{N} a_{1i} \frac{\partial v(x,t)}{\partial x_i} + 2\alpha a_{11}(x,t) e^{-\alpha x_1} \frac{\partial u(x,t)}{\partial x_1} - 2\alpha a_{11}(x,t) v(x,t).$$

Заметим, что

$$-2\alpha a_{11}(x,t)v(x,t) \geqslant 0$$
 в D .

Собирая вместе полученные равенства, получим (8.1).

Шаг 2. В силу равномерной параболичности оператора L найдется такое $\vartheta>0$, что

$$a_{11}(x,t) \geqslant \vartheta > 0$$
 для всех $(x,t) \in D$.

Поэтому при достаточно большом $\alpha>0$ получим неравенство

$$a_{11}(x,t)\alpha^2 + b_1(x,t)\alpha + c(x,t) > 0$$
 B D. (8.2)

Пусть $N\subset D$ — это произвольная окрестность точки P_0 . Тогда

$$v(x,t) = u(x,t) \exp[-\alpha x_1] \leqslant 0$$
 B N, (8.3)

то из (8.2), (8.3) и (8.1) получим неравенство

$$\widetilde{L}v(x,t)\geqslant 0$$
 в $N.$ (8.4)

Причем в операторе \widetilde{L} отсутствует свободное слагаемое вида $\widetilde{c}(x,t)I.$ Поэтому мы можем применить теорему 4 к функции

$$v(x,t)+1, \quad \widetilde{L}[v(x,t)+1]=\widetilde{L}v(x,t)\geqslant 0 \quad \mathrm{B} \quad N$$

и заключить, что эта функция достигает положительного максимума в точке $P_0 \in D$.

Шаг 3. Следовательно,

$$v(x,t) \equiv 0$$
 b $N \cap C(P_0) \Rightarrow u(x,t) \equiv 0$ b $N \cap C(P_0)$. (8.5)

Введем следующее множество:

$$\mathfrak{N} \equiv \{ x \in C(P_0) : \ u(x,t) = 0 \}. \tag{8.6}$$

В силу свойства (8.5) и произвольности окрестности $N\subset D$ точки $P_0\in D$ множество $\mathfrak N$ открыто в $C(P_0)$. С другой стороны, в силу того, что $u(x,t)\in \mathbb C(\overline D)$ это множество замкнуто в $C(P_0)$. Поскольку множество $C(P_0)$ связно, то $\mathfrak N=C(P_0)$.

Теорема доказана.

Непосредственным следствием этой теоремы является следующая: Теорема 7. Пусть выполняются условия (A) и (B). Если $u(x,t)\leqslant 0$ и $Lu(x,t)\geqslant 0$ в $S(P_0)$ или $u(x,t)\geqslant 0$ и $Lu(x,t)\leqslant 0$ в $S(P_0)$ и $u(P_0)=0$, то

$$u(x,t) \equiv 0 \quad s \quad S(P_0). \tag{8.7}$$

§ 9. Положительные решения задачи Коши

В этом параграфе мы будем использовать следующие обозначения:

$$\Omega_0 = \mathbb{R}^N \otimes (0, T], \quad \Omega = \mathbb{R}^N \otimes [0, T].$$

При этом функции u(x,t) мы будем считать непрерывными в Ω .

Справедлива следующая важная лемма:

Лемма 5. Пусть оператор L удовлетворяет предположениям (A) u (B) в Ω_0 , u пусть c(x,t) ограничено сверху. Если $Lu(x,t)\leqslant 0$ в Ω_0 , $u(x,0)\geqslant 0$ в \mathbb{R}^N и равномерно по $t\in [0,T]$ существует

$$\liminf_{|x|\to+\infty} u(x,t) \geqslant 0,$$

mo $u(x,t) \ge 0$ $\theta \Omega$.

Доказательство.

Шаг 1. Можно считать, что $c(x,t)\leqslant 0$, в противном случае мы бы сделали преобразование $v=ue^{-\gamma t}$ при $\gamma\geqslant c(x,t)$. Далее для любого $\varepsilon>0$ имеем

$$u(x,t)+arepsilon>0$$
 при $t=0$,

а также

$$u(x,t)+\varepsilon>0$$
 при $|x|=R, 0\leqslant t\leqslant T,$

причем

$$L(u(x,t)+\varepsilon) = c(x,t)\varepsilon \le 0 \Rightarrow u(x,t)+\varepsilon > 0,$$

если $|x|\leqslant R$ и $t\in [0,T]$ в силу принципа максимума (см. теорему 2). Шаг 2. Устремляя $\varepsilon\to +0$ мы получим утверждение этой леммы. Лемма доказана.

Сделаем следующие предположения относительно коэффициентов параболического оператора L:

$$|a_{ij}(x,t)| \le M$$
, $|b_i(x,t)| \le M(1+|x|)$, $|c(x,t)| \le M(1+|x|^2)$ (9.1)

при $(x,t)\in\Omega_0$ и $i,j=\overline{1,N}$. Справедлива следующая важная теорема: Теорема 8. Пусть L — параболический оператор с коэффициентами, непрерывными в Ω_0 и удовлетворяющими условиям (9.1). Предположим, что $Lu(x,t)\leqslant0$ в Ω_0 и

$$u(x,t) \geqslant -B \exp\left[\beta |x|^2\right]$$
 npu $(x,t) \in \Omega$ (9.2)

для некоторых положительных постоянных 1) B и β . Если $u(x,0)\geqslant 0$ в \mathbb{R}^N , то $u(x,t)\geqslant 0$ в Ω .

Доказательство.

Шаг 1. Рассмотрим функцию

$$H(x,t) = \exp\left[\frac{k|x|^2}{1-\mu t} + \nu t\right], \quad t \in [0, 1/(2\mu)],$$
 (9.3)

удовлетворяющую равенству

$$\frac{LH(x,t)}{H(x,t)} = \frac{4k^2}{(1-\mu t)^2} \sum_{i,j=1,1}^{N,N} a_{ij}(x,t) x_i x_j + \frac{2k}{1-\mu t} \sum_{i=1}^{N} a_{ii}(x,t) + \frac{2k}{1-\mu t} \sum_{i=1}^{N} b_i(x,t) x_i + c(x,t) - \frac{\mu k|x|^2}{(1-\mu t)^2} - \nu.$$
(9.4)

С помощью оценок (9.1) получаем следующую оценку:

$$\frac{LH(x,t)}{H(x,t)} \le \left(16k^2N^2M^2 + 8kNM + M - \mu k\right)|x|^2 + (8kNM + M - \nu).$$
(9.5)

Таким образом, для любого k>0 найдутся такие достаточно большие постоянные $\mu>0$ и $\nu>0$, что будет выполнено неравенство

$$\frac{LH(x,t)}{H(x,t)} \leqslant 0. {(9.6)}$$

¹⁾ Здесь мы снова сталкиваемся с необходимостью рассматривать решения в классе растущих функций А. Н. Тихонова.

² М. О. Корпусов

 $extit{\it Шаг}$ 2. Рассмотрим теперь функцию v(x,t), определенную равенством

$$u(x,t) = H(x,t)v(x,t),$$

где H(x,t) — это функция (9.3) с фиксированными $k>\beta$ и с $\mu>0$ и $\nu>0$, при которых выполняется неравенство (9.6) для $0\leqslant t\leqslant 1/(2\mu)$. Заметим, что выполнены следующие неравенства:

$$v(x,t) \geqslant -B \frac{\exp\left\{\beta|x|^2\right\}}{H(x,t)} \geqslant -B \exp\left[-(k-\beta)|x|^2\right] e^{-\nu t} \Rightarrow \lim_{|x| \to +\infty} \inf v(x,t) \geqslant 0$$

равномерно по $t \in [0, 1/(2\mu)].$

Шаг 3. Функция v(x,t) удовлетворяет уравнению

$$\overline{L}v(x,t) \stackrel{def:}{=} \sum_{i,j=1,1}^{N,N} a_{ij}(x,t) \frac{\partial^2 v}{\partial x_i \partial x_j} + \sum_{i=1}^N \overline{b}_i \frac{\partial v}{\partial x_i} + \overline{c}v - \frac{\partial v}{\partial t} = \overline{f},$$

где

$$\overline{f} = \frac{Lu(x,t)}{H(x,t)} \le 0, \quad \overline{b}_i = b_i + 2\sum_{j=1}^N a_{ij} \frac{1}{H} \frac{\partial H}{\partial x_j}, \quad \overline{c} = \frac{LH}{H} \le 0.$$

При помощи леммы 5 мы приходим к выводу о том, что

$$u(x,t)\geqslant 0$$
 при $(x,t)\in\mathbb{R}^N\otimes[0,1/(2\mu)].$

Шаг 4. Далее повторяем рассуждения из шагов 1–3 но для области $\mathbb{R}^N\otimes [1/(2\mu),1/\mu]$ с функцией

$$H(x,t) = \exp\left[\frac{k|x|^2}{2-\mu t} + \nu t\right].$$

Далее по индукции.

Теорема доказана.

Замечание 9. Отметим, что доказанная теорема иногда носит название теорема Фрагмена-Линделёфа.

Задача 2. Пусть L — параболический в $\Omega_0=\mathbb{R}^N\otimes(0,T)$ оператор с непрерывными коэффициентами, удовлетворяющими (9.1). Предположим, кроме того, $c(x,t)\geqslant 0$ и

$$u(x,t)\geqslant -B\exp\left[eta|x|^2
ight]$$
 при $(x,t)\in\Omega=\mathbb{R}^N\otimes[0,T]$

при некоторых положительных $B>0,\ \beta>0,\ и$

$$Lu(x,t) \leqslant 0$$
 в Ω_0 .

Доказать, что из условия

$$u(x,0) \geqslant M > 0 \Rightarrow u(x,t) \geqslant M$$
 B Ω .

Решение. Рассмотрим функцию

$$v(x,t) \stackrel{def:}{=} u(x,t) - M.$$

Поскольку $c(x,t)\geqslant 0$ выполнено неравенство

$$Lv(x,t) = Lu(x,t) - Mc(x,t) \le 0.$$

Кроме того,

$$v(x,t) \geqslant -M - B \exp\left[\beta |x|^2\right] \geqslant -(M+B) \exp\left[\beta |x|^2\right], \quad v(x,0) \geqslant 0.$$

Следовательно, из теоремы 8, примененный к функции v(x,t) мы получим, что

$$v(x,t)\geqslant 0 \Rightarrow u(x,t)\geqslant M$$
 в Ω .

Задача З. [?] Пусть L — это параболический оператор с непрерывными коэффициентами, удовлетворяющими условиям (9.1). Пусть, кроме того,

$$c(x,t) \geqslant \alpha |x|^2 + \gamma, \quad \alpha > 0,$$
 (9.7)

Предположим, что функция u(x,t) удовлетворяет условию роста

$$u(x,t)\geqslant -B\exp\left[eta|x|^2
ight]$$
 при $(x,t)\in\Omega=\mathbb{R}^N\otimes[0,T]$

при некоторых положительных $B>0,\ \beta>0.$ Предположим, что

$$Lu(x,t) \leq 0, \quad u(x,0) \geq M_1 > 0.$$

Доказать, что выполнено неравенство

$$u(x,t) \geqslant M_1 \exp\left[\lambda |x|^2 t + \nu t\right], \quad \lambda > 0.$$

Решение. Рассмотрим 1) следующую функцию:

$$v(x,t) \stackrel{def:}{=} u(x,t) - M_1 \exp\left[\lambda |x|^2 t + \nu t\right].$$

Справедливы следующие вычисления:

$$\frac{\partial}{\partial x_i} \exp\left(\lambda |x|^2 t + \nu t\right) = 2\lambda x_i t \exp\left(\lambda |x|^2 t + \nu t\right),$$

$$\frac{\partial}{\partial t} \exp\left(\lambda |x|^2 t + \nu t\right) = \left(\lambda |x|^2 + \nu\right) \exp\left(\lambda |x|^2 t + \nu t\right),$$

$$\frac{\partial^2}{\partial x_i \partial x_j} \exp\left(\lambda |x|^2 t + \nu t\right) = \left(2\lambda t \delta_{ij} + 4\lambda^2 t^2 x_i x_j\right) \exp\left(\lambda |x|^2 t + \nu t\right).$$

Поэтому имеем

¹⁾ Переводчиками в этом месте в книге [?] допущена опечатка в выборе вспомогательной функции.

$$Lv(x,t) = Lu(x,t) - M_1L \exp\left(\lambda|x|^2 t + \nu t\right) \leqslant$$

$$\leqslant -M_1 \left(4\lambda^2 t^2 \sum_{i,j=1,1}^{N,N} x_i x_j a_{ij} + 2\lambda t \sum_{i=1}^{N} a_{ii} + 2\lambda t \sum_{i=1}^{N} x_i b_i + c - (\lambda|x|^2 + \nu)\right) \exp\left(\lambda|x|^2 t + \nu t\right).$$

Заметим, что в силу равномерной параболичности оператора L вытекают неравенства

$$\sum_{i,j=1,1}^{N,N} x_i x_j a_{ij} \geqslant \vartheta |x|^2, \quad a_{ii} \geqslant \vartheta.$$

Кроме того, в силу условий (9.1) и (9.7) справедлива следующая цепочка неравенств:

$$Lv(x,t) \leqslant -M_1 \left(4\lambda^2 t^2 \vartheta |x|^2 + 2\lambda t N \vartheta - 2\lambda t M |x| (1+|x|) + (\alpha - \lambda)|x|^2 + \gamma - \nu \right) \leqslant 0.$$

при достаточно большом $\alpha>\lambda$ и при $\gamma>\nu$. Теперь заметим, что

$$v(x,t) \ge -B \exp\left(\beta |x|^2\right) - M_1 \exp\left(\lambda |x|^2 T + \nu T\right) \ge$$

 $\ge -B_1(T) \exp\left(\beta_1(T)|x|^2\right)$

при некоторых $B_1 > 0$ и $\beta_1 > 0$. Кроме того,

$$v(x,0) \geqslant 0.$$

В силу теоремы 8 мы приходим к утверждению задачи.

Задача 4. [?] Пусть L — это параболический в $\Omega_0=\mathbb{R}^N\otimes(0,T]$ оператор с непрерывными коэффициентами и для некоторой постоянной M>0 выполнены неравенства

$$|a_{ij}(x,t)| \le M(|x|^2 + 1), \quad |b_i(x,t)| \le M(|x| + 1), \quad c(x,t) \le M.$$
 (9.8)

Доказать, что если

$$u(x,t) \geqslant -m(|x|^q + 1)$$
 при $\Omega = \mathbb{R}^N \otimes [0,T]$ (9.9)

для некоторых положительных постоянных A и q, то из условия

$$u(x,0) = u_0(x) \geqslant 0$$
 при $x \in \mathbb{R}^N$ (9.10)

вытекает неравенство

$$u(x,t) \geqslant 0$$
 при $(x,t) \in \Omega = \mathbb{R}^N \otimes [0,T].$ (9.11)

Решение. (Доказательство взято из работы [?].) Рассмотрим вспомогательную функцию

$$w(x,t) \stackrel{def:}{=} \frac{2m}{r_0^{2p-q}} (|x|^2 + Kt)^p e^{\alpha t}, \quad 2p > q.$$
 (9.12)

Выберем постоянные K>0 и $\alpha>0$ таким образом, чтобы для всех $r_0>0$ величина Lw(x,t) была отрицательной. Действительно,

$$a_{ij}(x,t)\frac{\partial^{2}w(x,t)}{\partial x_{i}\partial x_{j}} = \frac{4mp}{r_{0}^{2p-q}} \left(|x|^{2} + Kt\right)^{p-1} e^{\alpha t} \left[\frac{2x_{i}x_{j}}{|x|^{2} + Kt} + \delta_{ij}\right] a_{ij}(x,t),$$

$$b_{i}(x,t)\frac{\partial w}{\partial x_{i}} = \frac{4mp}{r_{0}^{2p-q}} \left(|x|^{2} + Kt\right)^{p-1} e^{\alpha t} x_{i} b_{i}(x,t),$$

$$\frac{\partial w(x,t)}{\partial t} = \frac{2m}{r_{0}^{2p-q}} \left(|x|^{2} + Kt\right)^{p-1} e^{\alpha t} \left[pK + \alpha \left(|x|^{2} + Kt\right)\right].$$

Следовательно,

$$Lw(x,t) = \frac{2m}{r_0^{2p-q}} \left(|x|^2 + Kt \right)^{p-1} e^{\alpha t} \left[4p \sum_{i,j=1,1}^{N,N} a_{ij} \frac{x_i x_j}{|x|^2 + Kt} + 2p \sum_{i=1}^{N} a_{ii} + 2p \sum_{i=1}^{N} x_i b_i + c \left(|x|^2 + Kt \right) - pK - \alpha \left(|x|^2 + Kt \right) \right].$$

Рассмотрим два случая — $|x|\geqslant 1$ и |x|<1. В первом случае с учетом неравенств (9.8) получим следующую оценку:

$$Lw(x,t) \leqslant \frac{2m}{r_0^{2p-q}} \left(|x|^2 + Kt \right)^{p-1} e^{\alpha t} \times \left[\left(4pN^2 + 2p(N+1) + 1 \right) M - \alpha \right] |x|^2 - pK + K(M-\alpha)t < 0, \quad (9.13)$$

если

$$\alpha > M\left(4pN^2 + 2p(N+1) + 1\right).$$
 (9.14)

Во втором случае заметим, что

$$|a_{ij}(x,t)| \le 2M, \quad |b_i(x,t)| \le 2M, \quad c(x,t) \le M.$$
 (9.15)

Поэтому при |x| < 1 справедлива оценка

$$Lw(x,t) = \frac{2m}{r_0^{2p-q}} \left(|x|^2 + Kt \right)^{p-1} e^{\alpha t} \times \times \left[16pM + M - pK + (M-\alpha)Kt \right] < 0 \quad (9.16)$$

при выполнении условия (9.14) на $\alpha > 0$ и условия на K > 0

$$16pM + M < pK. (9.17)$$

Таким образом, имеем при выполнении неравенств (9.14) и (9.17)

$$L(w(x,t) + u(x,t)) < 0$$
 при $(x,t) \in \mathbb{R}^N \otimes (0,T].$ (9.18)

Рассмотрим теперь функцию

$$v(x,t) \stackrel{\text{def:}}{=} w(x,t) + u(x,t) \tag{9.19}$$

в цилиндре $D_{r_0,T} = \{|x| \leqslant r_0\} \otimes \{0 \leqslant t \leqslant T\}$. При t = 0 имеем

$$v(x,0) = u_0(x) + 2mr_0^q \geqslant 0, (9.20)$$

а при $r=r_0$ имеем

$$v(x,t) \geqslant \frac{2m}{r_0^{2p-q}} \left(r_0^q + Kt \right)^p e^{\alpha t} - m \left(r_0^q + 1 \right) \geqslant$$
$$\geqslant 2mr_0^q - m(r_0^q + 1) = m(r_0^q - 1) > 0 \quad (9.21)$$

при $r_0 > 1$. Согласно принципу максимума имеем

$$v(x,t) \geqslant 0 \Rightarrow u(x,t) + w(x,t) \geqslant 0$$
 при $(x,t) \in D_{r_0,T}$. (9.22)

Осталось при фиксированном $(x,t) \in D_{r_0,T}$ перейти к пределу при $r_0 \to +\infty$ и из явного вида (9.12) функции w(x,t) получить следующее неравенство:

$$u(x,t)\geqslant 0$$
 при $(x,t)\in\mathbb{R}^N\otimes[0,T].$

Контрпример к задаче 4. Условия (9.8), налагаемые на коэффициенты оператора L, нельзя ослабить, если ограничиться оценками коэффициентов через степени |x|. Действительно, при любом $\delta>0$ функция

$$u(x,t) = egin{cases} \int\limits_{F_\delta(x,t)}^{+\infty} \exp\{-y^2\}\,dy & \quad$$
 для $0 < t \leqslant T, \ 0 & \quad$ для $t = 0, \end{cases}$

где

$$F_{\delta}(x,t) = \frac{\left(\sqrt{x^2 + 1} + x\right)^{\delta}}{2\sqrt{t}},$$

является непрерывной и ограниченной в $\mathbb{R}^1\otimes [0,T]$, обращается в нуль при t=0 и удовлетворяет при t>0 уравнению

$$\frac{1}{\delta^2} (x^2 + 1) (\sqrt{x^2 + 1} - x) u_{xx} + \frac{1}{\delta^2} (x - \delta \sqrt{x^2 + 1}) (\sqrt{x^2 + 1} - x) u_x - u_t = 0.$$

В этом уравнении коэффициент при u_{xx} растет не быстрее, чем $M|x|^{2+2\delta}$, а коэффициент при u_x растет не быстрее, чем $M|x|^{1+2\delta}$. Следовательно, при таком росте коэффициентов нарушается единственность решения задачи Коши в классе ограниченных функций.

Задача 5. [?] Пусть коэффициенты $a_{ij}(x,t),\ b_i(x,t)$ и c(x,t) ограничены в $\Omega=\mathbb{R}^N\otimes [0,T]$:

$$|a_{ij}(x,t)| < M, \quad |b_i(x,t)| < M, \quad |c(x,t)| < M,$$
 (9.23)

а функция u(x,t) непрерывна в Ω и удовлетворяет в $\Omega_0=\mathbb{R}^N\otimes (0,T]$ неравенствам

$$Lu(x,t) \le 0, \quad u(x,t) \ge -\exp\left[\beta(|x|^2 + 1)\right],$$
 (9.24)

где $\beta > 0$ — некоторая постоянная. Доказать, что

$$u(x,t)\geqslant 0$$
 при $(x,t)\in\mathbb{R}^N\otimes[0,T]$ (9.25)

при условии

$$u(x,0) = u_0(x) \geqslant 0$$
 при $x \in \mathbb{R}^N$. (9.26)

Решение. (Доказательство взято из работы [?].)

Для получения утверждения задачи нужно рассмотреть вспомогательную функцию

$$w(x,t) \stackrel{def:}{=} \exp\left[2\beta(|x|^2 + 1)e^{\alpha t} - \beta(r_0^2 + 1)\right]$$
 (9.27)

и повторить рассуждения при решении предыдущей задачи и проверить, что при надлежащим образом выбранной постоянной $\alpha>0$ выполнено неравенство

$$Lw(x,t) < 0$$
 при $(x,t) \in \mathbb{R}^N \otimes (0,T].$ (9.28)

Действительно, имеем

$$Lw(x,t) = w(x,t)e^{\alpha t} \left[4\beta \sum_{i=1}^{N} a_{ii} + 16\beta^{2} e^{\alpha t} \sum_{i,j=1,1}^{N,N} a_{ij}x_{i}x_{j} + 4\beta \sum_{i=1}^{N} b_{i}x_{i} + ce^{-\alpha t} - 2\beta \alpha (|x|^{2} + 1) \right] < 0$$

при условии

$$t \leqslant t_0 = \frac{1}{\alpha}, \quad \alpha = M\left(\frac{1}{\beta} + 8N + 48\beta N\right).$$

Теперь рассмотрим новую функцию

$$v(x,t) \stackrel{\text{def:}}{=} w(x,t) + u(x,t).$$
 (9.29)

В цилиндре $D_{r_0,t_0}=\{|x|\leqslant r_0\}\otimes\{0\leqslant t\leqslant t_0\}$ при t=0 имеем

$$v(x,0) = u_0(x) + w(x,0) \ge \exp\left[2\beta(|x|^2 + 1) - \beta(r_0^2 + 1)\right] \ge 0,$$

а при $r=r_0$ имеем

$$v(x,t) = \exp\left[2\beta(r_0^2 + 1)e^{\alpha t} - \beta(r_0^2 + 1)\right] + u_0(x) \geqslant$$
$$\geqslant \exp\left[\beta(r_0^2 + 1)\right] - \exp\left[\beta(r_0^2 + 1)\right] = 0. \quad (9.30)$$

В силу принципа максимума в цилиндре D_{r_0,t_0} мы получим, что

$$v(x,t) = u(x,t) + w(x,t) \geqslant 0$$
 B D_{r_0,t_0} .

Переходя к пределу при $r_0 \to +\infty$ мы получим, что

$$u(x,t) \geqslant 0$$
 при $(x,t) \in \mathbb{R}^N \otimes [0,t_0].$

Далее нужно повторить рассуждения последовательно в полосах

$$\frac{1}{\alpha} \leqslant t \leqslant \frac{2}{\alpha}, \quad \frac{2}{\alpha} \leqslant t \leqslant \frac{3}{\alpha}, \cdots \frac{n}{\alpha} \leqslant t \leqslant \frac{n+1}{\alpha}, \cdots$$

и в результате получим, что утверждение задачи выполнено для всех $(x,t)\in\mathbb{R}^N\otimes[0,T].$

Замечание к задаче 5. Для уравнения теплопроводности

$$u_t = u_{xx}$$

известны более сильные результаты, чем результат задачи 4. В частности, в работе С. Тэклинда [?] доказано, что решение задачи Коши единственно в классе функций, удовлетворяющих условию

$$|u(x,t)| \leqslant \exp\left[\delta|x|h(|x|)\right]$$
 при $|x| > 1$,

где $\delta>0$ — это произвольная постоянная, h(r) — положительная неубывающая функция и

$$\int_{1}^{\infty} \frac{dr}{h(r)} = +\infty.$$

Причем в случае сходимости последнего интеграла единственность решения задачи Коши нарушается.

Задача 6. [?] Пусть непрерывная и ограниченная в $\mathbb{R}^N \otimes [0,T]$ функция u(x,t) удовлетворяет уравнению

$$Lu(x,t) = f(x,t)$$
 при $(x,t) \in \mathbb{R}^N \otimes (0,T],$ (9.31)

причем

$$|u(x,0)| \le M_1, \quad |f(x,t)| \le M_2, \quad c(x,t) \le M_3,$$
 (9.32)

коэффициенты a_{ij} и b_i подчинены условиям (9.8). Тогда всюду в $\mathbb{R}^N\otimes [0,T]$ выполнено неравенство

$$|u(x,t)| \le e^{M_3 t} (M_1 + M_2 t).$$
 (9.33)

Решение. (Доказательство взято из работы [?].)

Для доказательства рассмотрим вспомогательные функции

$$w_{\pm}(x,t) \stackrel{def:}{=} e^{M_3 t} (M_1 + M_2 t) \pm u(x,t).$$

По условию задачи имеем

$$w_{+}(x,0) \geqslant 0.$$

Вычислим $Lw_{\pm}(x,t)$. Имеем

$$Lw_{\pm}(x,t) = e^{M_3t} \left[(c - M_3)(M_1 + M_2t) - M_2 \right] \pm f \leqslant -M_2e^{M_3t} \pm f \leqslant 0$$

Отметим, что в силу ограниченности в $\mathbb{R}^N\otimes [0,T]$ решения u(x,t) найдется такая постоянная m>0, что

$$u(x,t) \geqslant -m \Rightarrow u(x,t) \geqslant -m(|x|^q + 1).$$

В силу результата задачи 3 получим

$$w_\pm(x,t)\geqslant 0$$
 всюду в $\mathbb{R}^N\otimes [0,T].$

Из доказанной теоремы непосредственно вытекает, что справедлива следующая теорема:

Теорема 9. Пусть L — это параболический оператор c непрерывными в $\mathbb{R}^N \otimes (0,T]$ коэффициенами и выполняются условия (9.1). Тогда существует не более одного решения задачи Коши

$$Lu(x,t) = f(x,t) \quad \mathcal{B} \quad \mathbb{R}^N \otimes (0,T],$$
 (9.34)

$$u(x,0) = \varphi(x) \quad \mathbf{g} \quad \mathbb{R}^N, \tag{9.35}$$

удовлетворяющего условию роста А. Н. Тихонова

$$|u(x,t)| \leqslant B \exp\left[\beta |x|^2\right] \tag{9.36}$$

при некоторых положительных константах B и β .

Доказательство.

Пусть $f(x,t)\equiv 0$ и $\varphi(x)\equiv 0$. Из условия (9.36) вытекает, что

$$u(x,t)\geqslant -B\exp\left[eta|x|^2
ight]$$
 либо $-u(x,t)\geqslant -B\exp\left[eta|x|^2
ight].$

в первом случае из теоремы 8 получим, что $u(x,t)\geqslant 0$, а во втором случае получим, что $-u(x,t)\geqslant 0$. Итак, $u(x,t)\equiv 0$.

Теорема доказана.

Замечание. Теорема Виддера. [?] Отметим, что имеет место следующий важный результат: любая неотрицательная функция,

непрерывная в $\mathbb{R}^1 \otimes [0,+\infty)$, равная нулю при t=0 и удовлетворяющая уравнению теплопроводности

$$u_{xx} - u_t = 0$$
 ε $(x,t) \in \mathbb{R}^1 \otimes [0,+\infty),$

равна нулю тождественно.

С другой стороны, А. Н. Тихонов предложил следующий пример:

$$u(x,t) = \sum_{k=0}^{+\infty} \frac{g^{(k)}(t)}{(2k)!} x^{2k}, \quad g(t) = \exp(-t^2) \quad t > 0, \quad g(0) = 0, \quad (9.37)$$

который показывает, что условие знакоположительности существенно. Кроме того, ясно, что функция (9.37) не удовлетворяет условию роста А. Н. Тихонова.

Пример неединственности. [?] Заметим, что во всех теоремах единственности мы требовали, чтобы функция u(x,t) была непрерывна вплоть до границы области D. Например, нельзя потребовать, чтобы функция была непрерывна по t для каждого x. Действительно, рассмотрим следующую задачу:

$$u_t = u_{xx}$$
 при $t > 0$, $x \in \mathbb{R}^1$, (9.38)

$$\lim_{t \to +0} u(x,t) = 0$$
 для каждого фиксированного $x \in \mathbb{R}^1$. (9.39)

Решение этой задачи в классе А. Н. Тихонова имеет следующий явный вил:

$$u(x,t) = \frac{x}{t^{3/2}} \exp\left[-\frac{x^2}{4t}\right].$$
 (9.40)

Отметим, что построенное решение является неограниченным в любой окрестности точки (0,0). Действительно, запишем функцию (9.40) в следующем виде:

$$u(x,t) = \frac{2}{t} \frac{x}{2\sqrt{t}} \exp\left[-\frac{x^2}{4t}\right].$$

Будем стремить точку (x,t) к точке (0,0) по параболе

$$x = a2\sqrt{t}$$
 при $t \to +0$, $a > 0$,

тогда

$$u(x(t),t)=rac{2}{t}ae^{-a^2}
ightarrow+\infty$$
 при $t
ightarrow+0.$

§ 10. Теорема типа Жиро

Для того, чтобы исследовать вопрос о единственности решения второй и третьей краевой задачи нам необходимо доказать так называемую теорему типа Жиро о знаке косой производной. Предварительно дадим определение свойства строгой сферичности изнутри.

Определение 4. Пусть $P_0=(x_0,t_0)$ — это точка на границе ∂D области D. Если существует такой замкнутый шар B с цен-

тром в точке $(\overline{x}, \overline{t})$, что $B \subset \overline{D}$, $B \cap \partial D = \{P_0\}$, и если $\overline{x} \neq x_0$, то мы скажем что P_0 обладает свойством строгой сферичности изнутри.

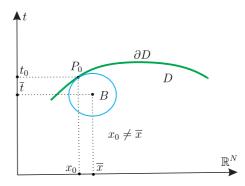


Рис. 24. К определению 4 строгой сферичности.

Замечание 10. Отметим, что если убрать требование $\overline{x} \neq x_0$ в определении 4, то мы получим свойство сферичности изнутри. Замечание 11. Отметим, что свойство строгой сферичности не выполняется для многих естественных областей. Смотри рисунок 26. На этом рисунке, во-первых, отмечены точки A_0 , B_0 , C_0 и D_0 , которые не обладают даже свойством сферичности (не строгой) изнутри, поскольку не существует малого шара, который коснулся бы этих точек оставаясь внутри области D. Далее, нижняя крышка $\overline{D} \cap \{t =$ = 0} цилиндра D обладает свойством сферичности изнутри, но никакая точка нижней крышки не обладает свойством строгой сферичности изнутри. Аналогичным образом верхняя крышка B_T цилиндра D также обладает лишь свойством сферичности изнутри, а не строгой сферичности изнутри. Наконец, лишь боковая поверхность $\overline{D} \cap \{0 < t < T\}$ обладает свойством строгой сферичности изнутри. Хотя, именно на боковой поверхности в случае второй и третьей краевых задач ставится условия с косой производной.

Предположим теперь, что $u(x)\in \mathbb{C}(\overline{D})$ и выполнены, стало быть, все условия теоремы 4, причем $u(x,t)\neq const$ в области D. Пусть, кроме того,

$$Lu(x,t) \geqslant 0$$
 B D . (10.1)

Если u(x,t) имеет положительный максимум M>0 в \overline{D} , то в силу условия теоремы 4 функция u(x,t) в некоторой точке $P_0\in\partial^{'}D=S\cup\overline{B}$ (на параболической границе области D) достигает максимума

$$u(P_0) = M$$
 в точке $P_0 \in \partial' D$. (10.2)

При этих условиях справедлива следующая теорема типа Жиро:

Tеорема типа Жиро. Eсли выполняются высказанные выше условия, точка P_0 обладает свойством строгой сферичности из-

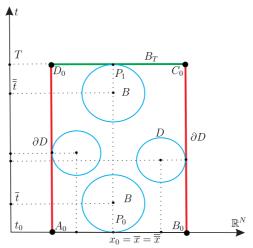


Рис. 25. К замечанию 11.

нутри и существует окрестность V точки P_0 , такая, что

$$u(x,t) < M \quad \mathbf{e} \quad D \cap V, \tag{10.3}$$

то для любого некасательного внутреннего направления l_{P_0} выполнено неравенство

$$\frac{\partial u}{\partial l_{P_0}}(P_0) \stackrel{def}{=} \lim_{|(x,t)-(x_0,t_0)| \to +0, (x,t) \in B} (l_{P_0}, D_{x,t}) u(x,t) < 0,$$
 (10.4)

где

$$D_{x,t} = (\partial_{x_1}, ..., \partial_{x_N}, \partial_t).$$

Замечание 12. Некасательным внутренним направлением мы называем направление из точки P_0 внутрь шара B, граница которого касается ∂D в точке P_0 .

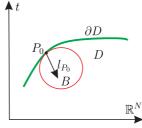


Рис. 26. Некасательное внутреннее направление и шар B.

Доказательство.

Шаг 1. Можно считать, что внутренность замкнутого шара B

лежит в $D \cap V^{-1}$). Обозначим границу B через ∂B . Пусть π — это гиперплоскость, которая делит пространство $(x,t) \in \mathbb{R}^{N+1}$ на два полупространства π^- и π^+ так, что

$$\overline{P} = (\overline{x}, \overline{t}) \in \pi^-, \quad P_0 = (x_0, t_0) \in \pi^+.$$

Так как $\overline{x} \neq x_0$, мы можем выбрать гиперплоскость π таким образом,

$$B^+\stackrel{def:}{=}\pi^+\cap B
eqarnothing$$
 и $|x-\overline{x}|\geqslant a>0$ для всех $(x,t)\in B^+.$

При этом граница B^+ состоит из части $C_1 \in \partial B$ и другой части $C_2 \in$ $\in B \cap \pi$.

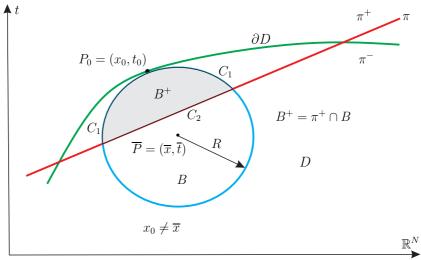


Рис. 27. Множество B^+ и его граница $C_1 \cup C_2$.

Шаг 2. Введем функцию

$$h(x,t) \stackrel{def:}{=} \exp\left\{-\alpha \left[|x-\overline{x}|^2 + |t-\overline{t}|^2\right]\right\} - \exp\left\{-\alpha R^2\right\}, \quad (10.5)$$

где R — это радиус сферы ∂B (граница шара B). Имеем

$$h(x,t)=0$$
 при $(x,t)\in C_1,$ $h(x,t)\geqslant 0$ при $(x,t)\in \overline{B^+},$ (10.6) причем можно проверить, что 2)

$$Lh(x,t) > 0$$
 B B^+ (10.7)

 $^{^{1})}$ Можно просто выбрать шар B достаточно малым.

 $^{^2}$) Здесь существенно, что $x_0 \neq \overline{x}$ и поэтому выполнено следующее неравенство: $|x-\overline{x}|\geqslant a>0$ для всех $(x,t)\in B^+$.

при достаточно большом $\alpha > 0$.

Шаг 3. Введем следующую функцию:

$$v(x,t) \stackrel{\text{def:}}{=} u(x,t) + \varepsilon h(x,t), \quad \varepsilon > 0.$$
 (10.8)

Для достаточно малого $\varepsilon>0$ функция v(x,t) будет удовлетворять условиям

$$v(x,t) < M$$
 на C_2 , $v(x,t) = u(x,t) < M$ на $C_1 \setminus \{P_0\}$, (10.9)

причем

$$v(P_0) = u(P_0) = M. (10.10)$$

Поскольку

$$Lv(x,t) = Lu(x,t) + \varepsilon Lh(x,t) > 0$$
 B B^+ , (10.11)

то функция v(x,t) в силу принципа максимума не может принимать своего максимального значения M>0 во внутренней точке B^+ . Итак,

$$v(x,t) < M$$
 внутри B^+ . (10.12)

Шаг 4. Из (10.10) и (10.12) вытекает, что ¹)

$$\frac{\partial v}{\partial l_{P_0}}(P_0) \leqslant 0. \tag{10.13}$$

Заметим, что

$$\frac{\partial h(x,t)}{\partial n_{x,t}} > 0, \quad \frac{\partial h(x,t)}{\partial \tau_{x,t}} = 0 \quad \text{B} \quad (x,t) = P_0, \tag{10.14}$$

где $n_{x,t}$ — это внутренняя нормаль к сфере ∂B в точке P_0 , а $\tau_{x,t}$ — это касательная к сфере ∂B в той же точке P_0 . Заметим, что

$$\begin{split} \frac{\partial}{\partial l_{P_0}} &= \cos(l_{P_0}, n_{P_0}) \frac{\partial}{\partial n_{P_0}} + \cos(l_{P_0}, \tau_{P_0}) \frac{\partial}{\partial \tau_{P_0}}, \\ &\cos(l_{P_0}, n_{P_0}) > 0, \quad \cos(l_{P_0}, \tau_{P_0}) = 0. \end{split}$$

Следовательно,

$$\frac{\partial h}{\partial l_{P_0}}(P_0) > 0. \tag{10.15}$$

Итак, из (10.13) и (10.15) вытекает, что

$$\frac{\partial u}{\partial l_{P_0}}(P_0) = \frac{\partial v}{\partial l_{P_0}}(P_0) - \varepsilon \frac{\partial h}{\partial l_{P_0}}(P_0) < 0. \tag{10.16}$$

Лемма доказана.

 $^{^{1}}$) Ниже следующее неравенство выполнено, поскольку $l_{P_{0}}$ — это внутреннее направление, а поскольку в граничной точке P_{0} у функции u(x,t) строгий максимум, то по любому внешнему направлению τ к точке P_{0} выполнено неравенство $\partial v(P_{0})/\partial \tau \geqslant 0$.

Замечание 13. Предположение, что

$$u(x,t) < M$$
 b $D \cap V$,

является, конечно, существенным, так как в противном случае u(x,t) могла бы быть постоянной в $D\cap V$ и тогда бы

$$\frac{\partial u}{\partial l_{P_0}}(P_0) = 0.$$

Контрпример к теореме типа Жиро 1. Заметим, что если P_0 — это угловая точка границы ∂D , то теорема типа Жиро может оказаться неверной. Например, если определить область D неравенствами

$$x^2 + t^2 < R^2$$
, $t < \gamma_1 x$, $t < \gamma_2 x$, $\gamma_1 > 0 > \gamma_2$,

и положить, что

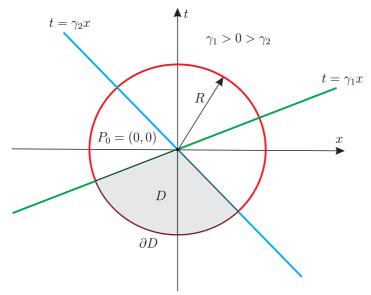


Рис. 28. Область D с угловой точкой $P_0=(0,0).$

$$P_0 = (0,0), \quad Lu(x,t) = \frac{\partial^2 u(x,t)}{\partial x^2} - \frac{\partial u(x,t)}{\partial t},$$
$$u(x,t) = (t - \gamma_1 x)(\gamma_2 x - t) + 1,$$

ТО

$$u(x,t)<1$$
 b $D,$ $u(x,t)=1$ b $P_0,$
$$Lu(x,t)=-2\gamma_1\gamma_2+\overline{\overline{o}}(|x|+|t|)>0,$$

если R>0 достаточно малое. Однако,

$$\frac{\partial u}{\partial l_{P_0}}(P_0) = 0$$

для любого направления l_{P_0} .

Контрпример к теореме типа Жиро 2. Заметим, что условие строгой сферичности изнутри нельзя заменить на условие сферичности изнутри, т.е. условие $x_0 \neq \overline{x}$ существенно. Действительно, рассмотрим область $D = \{(x,t): x \in \mathbb{R}^1, \ t>0\}$. Пусть

$$P_0 = (0,0), \quad Lu(x,t) = \frac{\partial^2 u(x,t)}{\partial x^2} - \frac{\partial u(x,t)}{\partial t}, \quad u(x,t) = 1 - t^2.$$

Отметим, что для заданной функции u(x,t) имеем

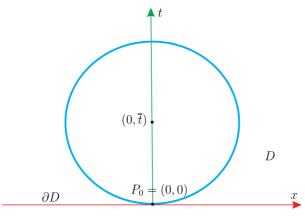


Рис. 29. Область D с условием нестрогой сферичности всей границы ∂D .

$$Lu(x,t) = 2t > 0$$
 b D , $u(P_0) = 1$, $u(x,t) < 1$ b D ,

но при этом

$$\frac{\partial u}{\partial l_{P_0}}(P_0) = 0$$

для любого направления l_{P_0} .

§ 11. Вторая и третья краевые задачи

Будем пользоваться обозначениями первого параграфа. Пусть $\beta==\beta(x,t)\in\mathbb{C}(S)$, где S — это боковая граница области $D\subset\mathbb{R}^{N+1}$ и пусть $\tau=\tau(x,t)$ — это вектор эвклидова пространства \mathbb{E}^{N+1} , определенный на S и непрерывно меняющийся на S. Пусть заданы любые функции f(x,t) на $D\cup B_T,\, \varphi(x)$ на \overline{B} и $\psi(x,t)$ на S.

Напомним постановку третьей краевой задачи.

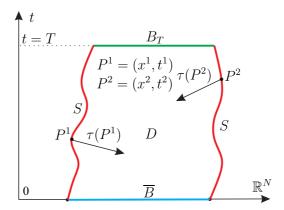


Рис. 30. Векторное поле на границе S.

Постановка третьей краевой задачи. Найти функцию $u(x,t),\,y$ довлетворяющую уравнению

$$Lu(x,t) = f(x,t) \quad npu \quad (x,t) \in D \cup B_T, \tag{11.1}$$

удовлетворяющую начальному условию

$$u(x,0) = \varphi(x) \quad npu \quad x \in \overline{B}$$
 (11.2)

и граничному условию

$$\frac{\partial u(x,t)}{\partial \tau} + \beta(x,t)u(x,t) = \psi(x,t) \quad npu \quad (x,t) \in S.$$
 (11.3)

Замечание 14. Заметим, что если направление $\tau=\tau(x,t)$ нигде не касается поверхности S, то задача называется регулярной.

Пусть D цилиндр с основанием B и боковой границей S. Пусть, кроме того,

$$n_{x,t} = (n_{x,t,1}, ..., n_{x,t,N}, 0)$$

внутренняя нормаль к $(x,t) \in S$, тогда, напомним, внутренней конормалью называется величина

$$\nu_{x,t} = (\nu_{x,t,1}, ..., \nu_{x,t,N}, 0), \quad \nu_{x,t,i} = \sum_{j=1}^{N} a_{ij}(x,t) n_{x,t,j}.$$

В частном случае, когда $a_{ij}=\delta_{ij}$ внутренняя нормаль и внутренняя конормаль совпадают.

Заметим, что в некоторых учебных пособиях (см., например, [?]) используется такое определение второй краевой задачи:

Постановка второй краевой задачи. Третья краевая задача (11.1)-(11.3) в случае когда $\tau(x,t)=\nu_{x,t}$ — направление внутренней конормали — называется вторая краевая задача.

Справедлива следующая теорема:

Теорема единственности решения третьей краевой задачи. Пусть L — параболический оператор c непрерывными в D коэффициентами. Предположим, что $c(x,t)\leqslant 0$, $\beta(x,t)\leqslant 0$ и каждая точка $P\in S$ обладает свойством строгой сферичности изнутри. Тогда существует не более одного решения третьей краевой задачи (11.1)–(11.3). Если τ не зависит от t, то предположение $c(x,t)\leqslant 0$ можно опустить.

Доказательство. В силу линейности задачи нам нужно доказать, что если $f(x,t)\equiv 0$ в $D\cup B_T,\ \varphi(x)\equiv 0$ в \overline{B} и $\psi(x,t)\equiv 0$ на S, то $u(x,t)\equiv 0$ в D.

Шаг 1. Последнее утверждение теоремы доказывается стандартным образом при помощи замены функции

$$v(x,t) = e^{-\gamma t} u(x,t), \quad \gamma \geqslant \max_{(x,t) \in \overline{D}} c(x,t).$$

Шаг 2. Допустим, что тем не менее $u(x,t)\not\equiv 0$. Можно считать, что u(x,t) имеет положительный максимум M>0 в \overline{D} . Если

$$u(P_0) = M$$
,

то $P_0 \notin B_t$ при $0 < t \leqslant T$, так как из сильного принципа максимума следовало бы, что

$$u(x,t) \equiv M$$
 при $(x,t) \in S(P_0)$,

а поскольку в силу наших исходных предположений существует кривая $\gamma \in D \cup B \cup B_T$, соединяющая некоторую точку $P^1 \in B_T$ с некоторой точкой $P^2 \in B$, вдоль которой координата t не возрастает.

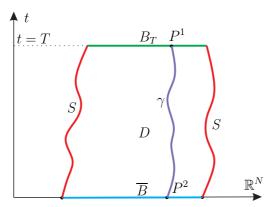


Рис. 31. Точки $P^1 \in B_T$ и $P^2 \in B$ и кривая γ , их соединяющая.

Но тогда

$$u(x,0)=M>0$$
 для всех $x\in B$,

но это противоречит нашему исходному предположению $\varphi(x)=0$ на \overline{B} . Следовательно, u(x,t) может достигать положительного максимума

только на боковой границе S, на которой как раз и <u>задано граничное</u> условие с производной по направлению.

Шаг 3. Таким образом, имеем

$$u(P_0)=M>0$$
 в некоторой точке $P_0=(x_0,t_0)\in S,$

причем в силу шага 2 имеем 1)

$$u(x,t) < M$$
 для всех $V \cap D$,

где V — некоторая окрестность точки P_0 . Поскольку точка P_0 удовлетворяет условию строгой сферичности изнутри, то мы можем применить теорему типа Жиро и получить, что

$$\frac{\partial u}{\partial \tau}(P_0) < 0 \Rightarrow 0 > \frac{\partial u}{\partial \tau}(P_0) = -\beta(P_0)u(P_0) \geqslant 0$$

и получить противоречие. Следовательно, $u(x,t)\equiv 0$ в $D\cup B_T$.

Теорема доказана.

Замечание 15. Заметим, что требование строгой сферичности на множестве $S\cap\{t=T\}$ является очень ограничительным — это означает, что область D должная выглядеть «приблизительно» так:

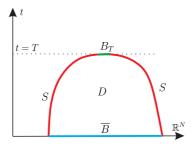


Рис. 32. Область D с условием сферичности точек множества $S \cap \{t = T\}$.

Однако, условие строгой сферичности множества точек $S \cap \{t=T\}$ можно заменить требованием $\beta(x,T) < 0$. Более того, имеет место следующее утверждение:

3адача 7. Доказать, что можно опустить требование строгой сферичности всех точек боковой границы S, заменив его требованием

$$\beta(x,t) < 0$$
 при $(x,t) \in S$.

Указание. В качестве наводящих соображений отметим, что если не требовать условия строгой сферичности изнутри множества точек боковой границы S, то и нельзя применить теорему Жиро — это означает, что в данном случае можно доказать единственность третьей краевой задачи без теоремы типа Жиро.

¹) Внутри области D не может достигаться положительный относительный максимум в силу принципа максимума, если u(x,t) не постоянная в $S(P_0)$.

Pе шение. В модификации нуждается только доказательство теоремы единственности третьей краевой задачи на шаге 3. Таким образом, имеем

$$u(P_0) = M > 0$$
 в некоторой точке $P_0 = (x_0, t_0) \in S$,

причем в силу шага 2 имеем 1)

$$u(x,t) < M$$
 для всех $V \cap D$,

где V — некоторая окрестность точки P_0 . Тогда в этой точке выполнено противоречивые неравенства:

$$0 \geqslant \frac{\partial u}{\partial \tau_{P_0}}(P_0) = -\beta(P_0)u(P_0) > 0.$$

§ 12. Теоремы сравнения — нелинейный случай

В этом параграфе мы рассмотрим теоремы сравнения для нелинейных краевых задач достаточно общего вида. Именно сначала рассмотрим следующую первую краевую задачу:

$$u_t - \Delta u = f(x, t, u, D_x u) \quad \text{B} \quad D \cup B_T, \tag{12.1}$$

$$u(x,t) = \psi(x,t)$$
 на $\overline{B} \cup S$, (12.2)

где $D_x=(\partial_{x_1},...,\partial_{x_N}).$ В этом параграфе мы будем использовать введенные в первом параграфе обозначения $D,\,S,\,B,$ а также

$$D_{\tau} \stackrel{def:}{=} D \cap \{0 < t < \tau\}, \quad B_{\tau} \stackrel{def:}{=} D \cap \{t = \tau\}, \quad S_{\tau} \stackrel{def:}{=} S \cap \{0 < t \leqslant \tau\}.$$

При этом мы будем предполагать, что $D\subset\mathbb{R}^N$ — это область и $B_{\tau}\subset\mathbb{R}^N$ — это область для каждого $\tau\in(0,T)$.

В дальнейшем в спецкурсе профессора Н. Н. Нефедова студентам кафедры математики будет изложен метод верхних и нижних решений доказательства разрешимости краевых задач для нелинейных уравнений параболического и эллиптического типов [?]. Метод основан на признаке сравнения для соответствующих нелинейных краевых задач. Поэтому мы докажем признак сравнения регулярных решений первой краевой задачи (12.1), (12.2).

Справедлива следующая теорема:

T е о p е м а 10. Пусть v(x,t) и w(x,t) принадлежат классу $\mathbb{C}^{(2,1)}_{x,t}(D)\cap \mathbb{C}(\overline{D})$. Пусть, кроме того, функция $f(x,t,p,p_i)$ при $i=\overline{1,N}$ является непрерывной по всем переменным (x,t,p,p_i) в области

$$E \stackrel{def:}{=} D \otimes \mathbb{R}^1 \otimes \mathbb{R}^N.$$

 $^{^{1}}$) Внутри области D не может достигаться положительный относительный максимум в силу принципа максимума, если u(x,t) не постоянная в $S(P_{0})$.

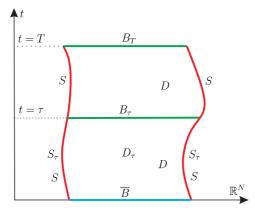


Рис. 33. Область D и множества D_{τ} , B_{τ} и S_{τ} .

Если

$$v_t - \Delta v > f(x, t, v, D_x v) \quad \mathbf{e} \quad D, \tag{12.3}$$

$$w_t - \Delta w \leqslant f(x, t, w, D_x w) \quad \mathbf{e} \quad D, \tag{12.4}$$

и если

$$v(x,t) > w(x,t)$$
 на $\overline{B} \cup S$, (12.5)

тогда

$$v(x,t) > w(x,t) \quad s \quad D. \tag{12.6}$$

Доказательство.

Шаг 1. Рассмотрим следующее множество точек $\sigma \in \mathfrak{M} \subset (0,T)$ таких, что

$$v(x,t)>w(x,t)$$
 для всех $x\in \overline{B_t}$ для всех $0\leqslant t<\sigma.$

Если мы докажем, что

$$\sup_{\sigma \in \mathfrak{M}} \{\sigma\} = T,$$

то теорема будет доказана.

Шаг 2. Пусть

$$t_0 \stackrel{def:}{=} \sup_{\sigma \in \mathfrak{M}} \{\sigma\}. \tag{12.7}$$

В силу (12.5) и того, что по условию теоремы $v(x,t), w(x,t) \in \mathbb{C}(\overline{D})$, выполнено неравенство $t_0>0$. Если $t_0< T$, то функция

$$z(x,t) \stackrel{def:}{=} v(x,t) - w(x,t) > 0$$
 в $D_{t_0}, \quad z(x,t) \geqslant 0$ на $B_{t_0},$ (12.8)

причем найдется такая точка $P_0 = (x_0, t_0) \in \overline{B_{t_0}}$, в которой

$$z(P_0) = 0. (12.9)$$

С другой стороны, в силу того, что $\partial B_{t_0}\in S$ и выполнено строгое неравенство (12.5) точка $P_0\notin\partial B_{t_0}.$ Следовательно, $P_0\in B_{t_0}$ и является

точкой минимума функции z(x,t) в области B_{t_0} . Итак, в точке P_0 выполнены необходимое и достаточное условие минимума

$$\frac{\partial z}{\partial x_i}(P_0) = 0, \quad \Delta z(P_0) \geqslant 0. \tag{12.10}$$

$$f(x_0, t_0, D_x v(P_0)) = f(x_0, t_0, D_x w(P_0)) \Rightarrow$$

$$\Rightarrow v_t(P_0) - \Delta v(P_0) > w_t(P_0) - \Delta w(P_0) \Rightarrow$$

$$\Rightarrow z_t(P_0) > \Delta z(P_0) \geqslant 0 \Rightarrow v_t(P_0) > w_t(P_0). \quad (12.11)$$

С другой стороны, в силу определения (12.7) имеем 1)

$$0 = z(P_0) < z(P)$$
 для всех D_{t_0} .

Следовательно,

$$z_t(P_0) \leqslant 0 \Rightarrow v_t(P_0) \leqslant w_t(P_0),$$

что противоречит неравенству (12.11).

Полученное противоречие доказывает, что $t_0 = T$

Теорема доказана.

Замечание 16. Заметим, что серия из двух условий (12.12) и (12.13) может быть заменена на следующую серию:

$$v_t - \Delta v \geqslant f(x, t, v, D_x v) \quad \text{B} \quad D, \tag{12.12}$$

$$w_t - \Delta w < f(x, t, w, D_x w) \quad \text{B} \quad D, \tag{12.13}$$

Теперь мы рассмотрим примеры применения теоремы 10 сравнения решений.

Задача 8. [?] Пусть

$$\frac{\partial v}{\partial t} > \frac{\partial^2 v}{\partial x^2} + av^2$$
 при $(x,t) \in (0,1) \otimes (0,4M)$, $a > 0$, (12.14)

$$v(x,0) > \frac{\mu}{M}, \quad v(0,t) > \frac{\mu}{M}, \quad v(1,t) > \frac{\mu}{N}$$
 (12.15)

при $(x,t) \in [0,1] \otimes [0,4M]$, а константы удовлетворяют следующим неравенствам:

$$a\mu > 2M + \frac{1}{4}, \quad a > 0, \quad M > 0, \quad \mu > 0,$$
 (12.16)

тогда

$$v(1/2,t) \to +\infty$$
 при $t \to 4M$. (12.17)

Решение. Рассмотрим следующую функцию:

$$w(x,t) \stackrel{def:}{=} \frac{\mu}{M - tx(1-x)}.$$
 (12.18)

 $^{^{1}}$) Заметим, что согласно определению $B_{t_{0}}
otin D_{t_{0}}$

Заметим, что при условии (12.16) имеет место следующее неравенство:

$$\frac{\partial w}{\partial t} \leqslant \frac{\partial^2 w}{\partial x^2} + aw^2$$
 при $(x,t) \in (0,1) \otimes (0,4M)$, $a>0$, (12.19)

причем

$$w(x,0) = \frac{\mu}{M}, \quad w(0,t) = \frac{\mu}{M}, \quad w(1,t) = \frac{\mu}{N}.$$
 (12.20)

Тогда применяя теорему 10 мы получим, что

$$v(x,t) > w(x,t)$$
 при $(x,t) \in (0,1) \otimes (0,4M)$. (12.21)

Следовательно, при x = 1/2 имеем

$$v(1/2,t) > \frac{4\mu}{4M-t}.$$

Задача 9. Рассмотрим следующую задачу Коши:

$$u_t - \Delta u + |u|^p = 0$$
 при $(x, t) \in \mathbb{R}^{N+1}_+, p \in (0, 1),$ (12.22)

$$u(x,0) = u_0(x)$$
 при $x \in \mathbb{R}^N$. (12.23)

Прежде всего будем рассматривать только регулярные решения этой задачи Коши, т.е. $u(x,t)\in\mathbb{C}^{2,1}_{x,t}(\mathbb{R}^{N+1}_+)\cap\mathbb{C}(\overline{\mathbb{R}^{N+1}_+})$. Необходимо, используя признак сравнения решений, получить результат об остывании решения за конечное время.

Решение. Прежде всего предположим, что

$$0 \leqslant u_0(x) \leqslant M, \quad M > 0, \quad x \in \mathbb{R}^N. \tag{12.24}$$

Прежде всего, отметим, что ниже мы докажем более сильный признак сравнения, чем теорема 10, из которого будет следовать, что $u(x,t)\geqslant 0$. Заметим теперь, что функция $v(x,t)=M+\varepsilon$ при $\varepsilon>0$ является решением следующего дифференциального неравенства:

$$v_t - \Delta v > -|v|^p$$
, $v(x, 0) = M + \varepsilon > u_0(x)$. (12.25)

Поэтому если в теореме 10 взять в качестве w(x,t)=u(x,t), то мы получим следующее неравенство:

$$u(x,t) < M + \varepsilon$$
 для всех $(x,t) \in \mathbb{R}^{N+1}_+$.

В пределе при $\varepsilon \to +0$ получим искомое неравенство

$$u(x,t) \leqslant M$$
 для всех $(x,t) \in \mathbb{R}^{N+1}_+$. (12.26)

Итак, $0 \le u(x,t) \le M$. Рассмотрим теперь следующую вспомогательную задачу Коши для обыкновенного дифференциального уравнения:

$$z_t + z^p = 0$$
 при $t > 0$, $z(0) = M > 0$. (12.27)

нетрудно проверить, что решением этой задачи является следующая функция:

$$z(t) = \begin{cases} \left(M^{1-p} - (1-p)t\right)^{1/(1-p)}, & \text{если } t \in [0, t_0]; \\ 0, & \text{если } t > t_0, \end{cases}$$
 (12.28)

где

$$t_0 = \frac{M^{1-p}}{1-p}. (12.29)$$

Заметим, что функция

$$v(x,t) = z(t) + \varepsilon, \quad \varepsilon > 0$$
 (12.30)

удовлетворяет дифференциальному неравенству

$$v_t - \Delta v > -v^p$$
 при $(x, t) \in \mathbb{R}^{N+1}_+$. (12.31)

Действительно, функция z=z(t) удовлетворяет равенству

$$z_t - \Delta z = -z^p \Rightarrow (z + \varepsilon)_t - \Delta (z + \varepsilon) = -z^p > -(z + \varepsilon)^p.$$

Кроме того,

$$v(x,0) = M + \varepsilon > u_0(x)$$
 при $x \in \mathbb{R}^N$. (12.32)

Опять применим теорему сравнения 10, в которой возьмем w(x,t) = u(x,t) и получим неравенство

$$u(x,t) < v(x,t) = z(t) + \varepsilon \Rightarrow 0 \le u(x,t) \le z(t), \quad (x,t) \in \mathbb{R}^{N+1}_+.$$
 (12.33)

Итак, мы делаем важный вывод — каждое решение задачи Коши (12.22), (12.23) обращается в нуль всюду в \mathbb{R}^N за конечное время $0 < t_1 \leqslant t_0$ при условиях $0 \leqslant u_0(x) \leqslant M$ и $u_0(x) \not\equiv 0$, где время $t_0 > 0$ определено явной формулой (12.29).

Задача 10. Рассмотрим следующую задачу Коши:

$$u_t - \Delta u = |u|^p$$
 при $(x, t) \in \mathbb{R}^{N+1}_+, p > 1,$ (12.34)

$$u(x,0) = u_0(x) \geqslant 0$$
 при $x \in \mathbb{R}^N$. (12.35)

Решения рассматриваем в классе $u(x,t)\in \mathbb{C}^{2,1}_{x,t}(\mathbb{R}^{N+1}_+)\cap \mathbb{C}(\overline{\mathbb{R}^{N+1}_+})$. Нужно получить достаточные условия разрушения решения этой задачи за конечное время.

Решение. Прежде всего заметим, что

$$\Delta u - u_t = -|u|^p \leqslant 0$$
 при $(x,t) \in \mathbb{R}^{N+1}_+, \quad u_0(x) \geqslant 0, \quad x \in \mathbb{R}^N$

Согласно теореме 3 (просто нужно вместо u(x,t) рассмотреть -u(x,t)) о принципе максимума в неограниченных областях получим, что $u(x,t)\geqslant 0$.

Рассмотрим вспомогательную задачу Коши для обыкновенного дифференциального уравнения:

$$z_t = z^p$$
 при $t > 0$, $z(0) = M > 0$. (12.36)

Его решение дается следующей явной формулой:

$$z(t) = (M^{1-p} - (p-1)t)^{-1/(p-1)}$$
 при $0 \le t < t_0$, (12.37)

где

$$t_0 \stackrel{def:}{=} \frac{1}{(p-1)M^{p-1}}. (12.38)$$

Отметим, что функция z=z(t) является монотонно возрастающей, причем

$$\lim_{t \to t_0} z(t) = +\infty.$$

Предположим, что выполнено следующее неравенство:

$$u_0(x) \geqslant M > 0$$
 при $x \in \mathbb{R}^N$. (12.39)

Введем следующую функцию:

$$w(x,t) = z(t) - \varepsilon, \quad \varepsilon \in (0,M).$$
 (12.40)

Эта функция удовлетворяет следующему дифференциальному неравенству:

$$w_t - \Delta w > w^p$$
 при $(x, t) \in \mathbb{R}^{N+1}_+$. (12.41)

Действительно,

$$z_t - \Delta z = z^p \Rightarrow (z - \varepsilon)_t - \Delta (z - \varepsilon) = z^p > (z - \varepsilon)^p$$

при $\varepsilon \in (0,M)$. Кроме того,

$$w(x,0) = M - \varepsilon < M \leqslant u_0(x)$$
 при $x \in \mathbb{R}^N$.

Осталось воспользоваться теоремой 10, в которой нужно взять v(x,t)=u(x,t) и получить следующее неравенство:

$$u(x,t) > z(t) - \varepsilon$$
 для всех $(x,t) \in \mathbb{R}^{N+1}$.

Переходя к пределу при $\varepsilon \to +0$ мы получим искомую оценку снизу

$$u(x,t) \geqslant z(t)$$
 для всех $(x,t) \in \mathbb{R}^{N+1}$. (12.42)

Таким образом, мы приходим к следующему важному выводу — при условии $u_0(x)\geqslant M>0$ выполнена оценка (12.42), из которой вытекает, что для некоторого $0< t_1\leqslant t_0$ решение задачи Коши (12.34), (12.35) разрушается за конечное время:

$$\limsup_{t \to t_1} \sup_{x \in \mathbb{R}^N} u(x, t) = +\infty. \tag{12.43}$$

Задача 11. Рассмотрим следующую задачу Коши:

$$u_t - \Delta u = |u|^p$$
 при $(x, t) \in \mathbb{R}^{N+1}_+$, $p \in (0, 1)$, (12.44)

$$u(x,0) = 0$$
 при $x \in \mathbb{R}^N$. (12.45)

Решения рассматриваем в классе $u(x,t)\in \mathbb{C}^{2,1}_{x,t}(\mathbb{R}^{N+1}_+)\cap \mathbb{C}(\overline{\mathbb{R}^{N+1}_+})$. Нужно показать, что в нелинейном случае единственность решения этой задачи может быть нарушена, даже если решение ищется в классе Тихонова.

Решение. Действительно, как и в предыдущем примере, имеем $u(x,t)\geqslant 0$. Рассмотрим вспомогательную задачу Коши для обыкновенного дифференциального уравнения:

$$z_t = z^p$$
 при $t > 0$, $z(0) = 0$. (12.46)

Его семейство всех решений (их бесконечно много) может быть представлено в следующем виде:

$$z(t) = (1-p)^{1/(1-p)} \begin{cases} (t-t_0)^{1/(1-p)}, & \text{если } t \geqslant t_0; \\ 0, & \text{если } t \in [0, t_0], \end{cases}$$
(12.47)

где $t_0 \geqslant 0$ — любое неотрицательное число. Ясно, что решения u(x,t) = z(t) удовлетворяют условиям задачи Коши (12.44) и (12.45).

Задача 12. Рассмотрим следующую задачу Коши:

$$u_t - \Delta u + |u|^p = 0$$
 при $(x, t) \in \mathbb{R}^{N+1}_+, p > 1,$ (12.48)

$$u(x,0) = u_0(x) \geqslant 0$$
 при $x \in \mathbb{R}^N$. (12.49)

Решения рассматриваем в классе $u(x,t)\in \mathbb{C}^{2,1}_{x,t}(\mathbb{R}^{N+1}_+)\cap \mathbb{C}(\overline{\mathbb{R}^{N+1}_+})$. Нужно получить оценку сверху на скорость убывания решения во времени этой задачи.

Решение. Как и в первом примере, используя более сильный признак сравнения можно доказать, что $u(x,t)\geqslant 0$

Предположим, что $0 \le u_0(x) \le M$. Рассмотрим задачу Коши для обыкновенного дифференциального уравнения:

$$z_t + z^p = 0$$
 при $t > 0$, $z(0) = M > 0$, $p > 1$. (12.50)

Единственное решение дается следующей формулой:

$$z(t) = (M^{1-p} + (p-1)t)^{-1/(p-1)}, \quad t \ge 0.$$
 (12.51)

Как и ранее, можно легко показать, что функция

$$v(x,t) \stackrel{def:}{=} z(t) + \varepsilon, \quad \varepsilon > 0$$
 (12.52)

удовлетворяет дифференциальному неравенству

$$v_t - \Delta v > -v^p, \quad (x, t) \in \mathbb{R}^{N+1}_+,$$
 (12.53)

причем

$$v(x,0) = M + \varepsilon > M \geqslant u_0(x) = u(x,0)$$
 при $x \in \mathbb{R}^N$. (12.54)

Осталось применить теорему сравнения 10, в которой положить w(x,t)=u(x,t), и получить оценку

$$\begin{split} 0\leqslant u(x,t) < v(x,t) &= z(t) + \varepsilon \Rightarrow \\ &\Rightarrow 0\leqslant u(x,t)\leqslant z(t) = \\ &= \frac{1}{\left(M^{1-p} + (p-1)t\right)^{1/(p-1)}} \quad \text{для всех} \quad (x,t) \in \mathbb{R}_+^{N+1}. \quad (12.55) \end{split}$$

Задача для самостоятельного решения 1. Рассмотреть задачу Коши

$$u_t - \Delta u + |\nabla u|^q + |u|^p = 0$$
 при $(x, t) \in \mathbb{R}^{N+1}_+$, (12.56)

$$u(x,0) = u_0(x), \quad x \in \mathbb{R}^N$$
 (12.57)

при условиях $q>0,\; p\in (0,1),\; 0\leqslant u_0(x)\leqslant M$ и $u(x,t)\geqslant 0.$ Доказать, что для решения этой задачи имеет место неравенство (12.33)

Задача для самостоятельного решения 2. Рассмотреть задачу Коши

$$u_t - \Delta u = |\nabla u|^q + |u|^p$$
 при $(x, t) \in \mathbb{R}^{N+1}_+$, (12.58)

$$u(x,0) = u_0(x), \quad x \in \mathbb{R}^N$$
 (12.59)

при условиях $q>0,\ 1< p,\ 0< M\leqslant u_0(x)$. Доказать, что для решения этой задачи имеет место неравенство (12.42).

Рассмотренные примеры показывают, что результат теоремы 10 может быть модифицирован следующим образом:

Теорема 11. Пусть v(x,t) и w(x,t) принадлежат классу $\mathbb{C}^{(2,1)}_{x,t}(D)\cap \mathbb{C}(\overline{D})$. Пусть, кроме того, функция $f(x,t,p,p_i)$ при $i=\overline{1,N}$ является непрерывной по всем переменным (x,t,p,p_i) в области

$$E \stackrel{def:}{=} D \otimes \mathbb{R}^1 \otimes \mathbb{R}^N$$

и является строго монотонной по переменной $p \in \mathbb{R}^1$. Если

$$v_t - \Delta v \geqslant f(x, t, v, D_x v) \quad \theta \quad D, \tag{12.60}$$

$$w_t - \Delta w \leqslant f(x, t, w, D_x w) \quad \theta \quad D, \tag{12.61}$$

и если найдется такое $\varepsilon_0>0$

$$v(x,t) \geqslant w(x,t) + \varepsilon_0$$
 ha $\overline{B} \cup S$, (12.62)

тогда

$$v(x,t) \geqslant w(x,t) \quad \mathcal{B} \quad D. \tag{12.63}$$

Доказательство.

Для доказательства этой теоремы достаточно заметить, что заменой

$$v(x,t) = \overline{v}(x,t) + \varepsilon, \quad \varepsilon \in (0,\varepsilon_0)$$

либо заменой ¹)

$$w(x,t) = \overline{w}(x,t) - \varepsilon, \quad \varepsilon \in (0,\varepsilon_0)$$

мы получим серию неравенств (с учетом замечания 16) для \overline{v} и wили для v и \overline{w} в формулировке теоремы 10. А после применения этой теоремы нужно перейти к пределу при $\varepsilon \to +0$, чтобы получить неравенство (12.63).

Теорема доказана.

Теперь мы рассмотрим нелинейную третью краевую задачу и докажем признак сравнения для нее. Именно сначала рассмотрим следующую краевую задачу:

$$u_t - \Delta u = f(x, t, u, D_x u) \quad \text{B} \quad D \cup B_T, \tag{12.64}$$

$$u(x,0) = \varphi(x)$$
 на \overline{B} , (12.65)

$$u(x,0)=\varphi(x)\quad \text{на}\quad \overline{B}, \tag{12.65}$$

$$\frac{\partial u(x,t)}{\partial \tau}+\beta(x,t,u(x,t))=\psi(x,t)\quad \text{на}\quad S, \tag{12.66}$$

где $D_x = (\partial_{x_1}, ..., \partial_{x_N}).$

Справедлива следующая теорема о признаке сравнения для третьей краевой задачи:

Теорема 12. Пусть все предположения теоремы 10 остаются без изменения. Если

$$v_t - \Delta v > f(x, t, v, D_x v) \quad \epsilon \quad D, \tag{12.67}$$

$$w_t - \Delta w \leqslant f(x, t, w, D_x w) \quad \mathsf{s} \quad D \tag{12.68}$$

и если

$$v(x,t) > w(x,t)$$
 на \overline{B} , (12.69)

$$\frac{\partial v(x,t)}{\partial \tau} + \beta(x,t,v(x,t)) < \frac{\partial w(x,t)}{\partial \tau} + \beta(x,t,w(x,t)) \quad \textit{на} \quad S, \quad (12.70)$$

где $\beta=eta(x,t,p)$ — это любая функция определенная на множестве $S\otimes\mathbb{R}^1,\ au= au(x,t)$ — направленное внутрь $D_t\cup B_t$ непрерывное векторное поле. Тогда

$$v(x,t) > w(x,t) \quad s \quad D. \tag{12.71}$$

Доказательство.

Здесь нужно заметить, что доказательство этой теоремы в точности повторяет доказательство предыдущей теоремы. Только точка P_0 не

¹⁾ Одновременная замена допустима, но лишена смысла.

может принадлежать ∂B_{t_0} , поскольку с одной стороны в силу принципа максимума

 $\frac{\partial z}{\partial \tau}(P_0) \geqslant 0,$

а, с другой стороны, в силу неравенства (12.70) имеем

$$\frac{\partial z}{\partial \tau}(P_0) < 0.$$

Теорема доказана.

Замечание 17. Заметим, что если потребовать строгой сферичности изнутри части $S\backslash\partial B_T$ боковой границы S, что достаточно естественно S, то строгое неравенство (12.70) можно заменить на нестрогое неравенство

$$\frac{\partial v(x,t)}{\partial \tau} + \beta(x,t,v(x,t)) \leqslant \frac{\partial w(x,t)}{\partial \tau} + \beta(x,t,w(x,t)) \quad \text{на} \quad S \quad \text{(12.72)}$$

и при этом результат теоремы остается в силе, если применить теорему типа Жиро.

Замечание 18. Заметим, что результат теоремы сравнения остается в силе при замене строгих неравенств на нестрогие. Результатом также будет нестрогое неравенство [?].

Задача 13. [?] Рассмотрим следующую задачу с нелинейными граничными условиями:

$$u_t = \Delta u$$
 при $(x,t) \in D = \Omega \otimes (0,T),$ (12.73)

$$\frac{\partial u(x,t)}{\partial n_x}=u^p(x,t)$$
 при $(x,t)\in S=\partial\Omega\otimes(0,T],$ $p>1,$ (12.74)

$$u(x,0) = u_0(x) \geqslant 0$$
 при $x \in \overline{\Omega}$, (12.75)

где n_x — это вектор внешней нормали к ляпуновской границе $\partial\Omega\in A^{1,h}$ ограниченной области $\Omega\subset\mathbb{R}^N.$ Нужно доказать, что всякое нетривиальное решение $u(x,t)\in\mathbb{C}^{(1)}_t((0,T];\mathbb{C}^{(2)}_x(\overline{\Omega}))\cap\mathbb{C}^{0,1}_{x,t}(\overline{\Omega}\otimes[0,T])$ разрушается за конечное время.

Решение.

Шаг 1. Прежде всего докажем, что

$$\inf_{x\in\Omega}u(x,\varepsilon)=c>0$$
 для достаточно малого $\varepsilon>0.$ (12.76)

□ Действительно, в силу доказанного признака сравнения и замечания 18 имеем

$$u(x,t) \geqslant 0$$
,

поскольку v(x,t)=0 удовлетворяет уравнению (12.73), граничному условию (12.74) и $u_0(x)\geqslant 0=v(x,0)$. Теперь заметим, что если

$$u(x_0,\varepsilon)=0$$
 при $x_0\in\Omega$,

¹⁾ Это условие выполнено для задач, возникающих в приложениях.

то в силу слабого принципа максимума имеем

$$u(x,t)=0$$
 для всех $(x,t)\in\overline{\Omega}\otimes[0,\varepsilon],$

а, стало быть, $u_0(x)=0$ для всех $x\in\overline{\Omega}$. Это противоречит тому, что $u_0(x)\not\equiv 0$. Кроме того, если $u(x,t)\not\equiv 0$ при $(x,t)\in\Omega\otimes[0,\varepsilon]$ и

$$u(x_0,\varepsilon)=0$$
 при $x_0\in\partial\Omega$,

то в этой точке минимума в силу граничного условия (12.74) получим

$$\frac{\partial u}{\partial n_x}(x_0,\varepsilon) = 0,$$

что противоречит теореме типа Жиро. 🛛

Шаг 2. Меняя если необходимо t=0 на $t=\varepsilon>0$ без ограничения общности можем сразу же считать, что

$$\inf_{x \in \Omega} u_0(x) = c > 0. \tag{12.77}$$

Рассмотрим следующую вспомогательную задачу:

$$\varphi_t = \Delta \varphi$$
 при $(x, t) \in D = \Omega \otimes (0, T),$ (12.78)

$$\frac{\partial \varphi(x,t)}{\partial n_x} = \varphi^p(x,t) \quad \text{при} \quad (x,t) \in \partial\Omega \otimes (0,T), \tag{12.79}$$

$$\varphi(x,0)=c>0$$
 при $x\in\overline{\Omega}.$ (12.80)

В силу признака сравнения с функцией v(x,t)=c, которая удовлетворяет системе уравнений

$$v_t = \Delta v$$
 при $(x,t) \in D = \Omega \otimes (0,T),$ $\dfrac{\partial v(x,t)}{\partial n_x} \leqslant v^p(x,t)$ при $(x,t) \in \partial \Omega \otimes (0,T),$ $v(x,0) = c > 0$ при $x \in \overline{\Omega},$

мы получим неравенство $\varphi(x,t)\leqslant c$ для всех t>0 и, используя опять признак сравнения, получим неравенство

$$u(x,t)\geqslant \varphi(x,t)$$
 для всех $(x,t)\in\Omega\otimes(0,T].$ (12.81)

Шаг 3. Рассмотрим следующую функцию:

$$\psi(x,t) \stackrel{def:}{=} \varphi(x,t+\eta) - \varphi(x,t) \quad \text{при} \quad \eta > 0. \tag{12.82}$$

Эта функция удовлетворяет следующей системе уравнений:

$$\psi_t = \Delta \psi$$
 при $(x, t) \in D = \Omega \otimes (0, T - \eta],$ (12.83)

$$\frac{\partial \psi}{\partial n_x} = p \left(\frac{\partial \varphi(x, t + \eta)}{\partial n_x} - \frac{\partial \varphi(x, t)}{\partial n_x} \right) =$$

$$= (\varphi^p(x, t + \eta) - \varphi^p(x, t)) =$$

$$=p\xi^{p-1}(x,t)\psi(x,t)\quad\text{для всех}\quad (x,t)\in S=\partial\Omega\otimes(0,T-\eta],\quad (12.84)$$
 где $\xi(x,t)\in[\varphi(x,t),\varphi(x,t+\eta)],$

$$\psi(x,0) = \varphi(x,\eta) - c \geqslant 0$$
 при $x \in \overline{\Omega}$. (12.85)

Используя признак сравнения мы получим, что

$$\psi(x,t)\geqslant 0 \quad \text{для всех} \quad (x,t)\in\Omega\otimes(0,T-\eta)\Rightarrow \\ \Rightarrow \varphi_t(x,t)\geqslant 0 \quad \text{при} \quad (x,t)\in D. \quad (12.86)$$

 $extit{Шаг}$ 4. Отметим, что в классе $\varphi(x,t)\in\mathbb{C}^{(1)}_t((0,T];\mathbb{C}^{(2)}_x(\overline{\Omega}))\cap\mathbb{C}^{0,1}_{x\,t}(\overline{\Omega}\otimes[0,T])$ функция

$$z(x,t) \stackrel{def:}{=} \varphi_t(x,t)$$

удовлетворяет следующей системе уравнений:

$$z_t = \Delta z \quad \text{при} \quad (x,t) \in D = \Omega \otimes (0,T),$$

$$\frac{\partial z(x,t)}{\partial n_x} = p \varphi^{p-1}(x,t) z(x,t) \quad \text{при} \quad (x,t) \in \partial \Omega \otimes (0,T),$$

$$z(x,0) \geqslant 0 \quad \text{при} \quad x \in \overline{\Omega}.$$

Аналогично доказательству свойства (12.76) мы получим, что для достаточно малого $\varepsilon>0$ имеет место неравенство

$$\inf_{x \in \Omega} z(x, \varepsilon) = \inf_{x \in \Omega} \varphi_t(x, \varepsilon) > 0.$$
 (12.87)

Шаг 5. Рассмотрим следующую функцию:

$$w(x,t) \stackrel{def:}{=} \varphi_t(x,t) - \delta \varphi^p(x,t). \tag{12.88}$$

Прежде всего имеем цепочку выражений

$$w_{t} - \Delta w = \varphi_{tt} - \delta p \varphi^{p-1} \varphi_{t} - \Delta \varphi_{t} + \delta \Delta \varphi^{p} =$$

$$= -\delta p \varphi^{p-1} \Delta \varphi + p(p-1) \delta \varphi^{p-2} |D\varphi|^{2} + \delta p \varphi^{p-1} \Delta \varphi =$$

$$= p(p-1) \delta \varphi^{p-2} |D\varphi|^{2} \geqslant 0, \quad (12.89)$$

поскольку

$$\varphi_{tt} = \Delta \varphi_t.$$

Кроме того,

$$\frac{\partial w}{\partial n_x} = \frac{\partial \varphi_t}{\partial n_x} - \delta \frac{\partial \varphi^p}{\partial n_x} = p\varphi^{p-1}\varphi_t - \delta p\varphi^{p-1}\varphi^p = p\varphi^{p-1}w. \tag{12.90}$$

Кроме того, при достаточно малом $\delta>0$ в силу (12.87) выполнено следующее неравенство:

$$w(x,\varepsilon) = \varphi_t(x,\varepsilon) - \delta \varphi^p(x,\varepsilon) \geqslant 0.$$
 (12.91)

Используя признак сравнения получим, что

$$w(x,t)\geqslant 0$$
 для всех $(x,t)\in\Omega\otimes[\varepsilon,T].$ (12.92)

Шаг 6. Итак, выполнено неравенство

$$\varphi_t(x,t) \geqslant \delta \varphi^p(x,t)$$
 для всех $(x,t) \in \Omega \otimes [\varepsilon,T].$ (12.93)

Решением этого дифференциального неравенства является следующее неравенство:

$$\varphi(x,t) \geqslant (\varphi(x,\varepsilon) - (p-1)\delta(t-\varepsilon))^{-1/(p-1)}$$
(12.94)

для всех $(x,t)\in\Omega\otimes[arepsilon,T].$ В силу неравенства (12.81) мы получим, что имеет место неравенство

$$u(x,t) \geqslant (\varphi(x,\varepsilon) - (p-1)\delta(t-\varepsilon))^{-1/(p-1)}$$
(12.95)

для всех $(x,t)\in\Omega\otimes[arepsilon,T]$. Это неравенство означает, что $T<+\infty$. Таким образом, утверждение задачи доказано.

§ 13. Случай нелинейного эллиптического оператора общего вида. Теорема сравнения

В этом параграфе мы докажем признак сравнения для общего оператора (эллиптического оператора) следующего вида:

$$L(u)(x,t) \stackrel{def:}{=} F\left(x,t,u,\frac{\partial u}{\partial x_i},\frac{\partial^2 u}{\partial x_i\partial x_j}\right) - \frac{\partial u}{\partial t},\tag{13.1}$$

в котором функция $F=F(x,t,p,p_i,p_{ij})$ определена на множестве $D\otimes\mathbb{R}^1\otimes\mathbb{R}^N\otimes\mathbb{R}^{N^2}$, на котором она является непрерывно дифференцируемой функцией от N^2+2N+2 переменных. Потребуем, чтобы функция $F=F(x,t,p,p_i,p_{ij})$ определяла эллиптический оператор. Для этого достаточно потребовать, чтобы было выполнено следующее неравенство:

$$\sum_{i,j=1,1}^{N,N} rac{\partial F}{\partial p_{ij}} \xi_i \xi_j > 0$$
 для всех $0
eq \xi \in \mathbb{R}^N$ (13.2)

и для всех $(x,t,p,p_i,p_{ij})\in D\otimes\mathbb{R}^1\otimes\mathbb{R}^N\otimes\mathbb{R}^{N^2}$. Теперь предположим, что область D является цилиндрической:

$$D = \Omega \otimes (0, T), \ S = \partial \Omega \otimes (0, T), \ B = \Omega \otimes \{t = 0\}, \ B_T = \Omega \otimes \{t = T\}.$$

Рассмотрим следующее нелинейное параболическое уравнение:

$$L(u)(x,t) = f(x,t)$$
 при $(x,t) \in D \cup B_T$, (13.3)

а также дифференциальное неравенство

$$L(w)(x,t) \leqslant f(x,t)$$
 при $(x,t) \in D \cup B_T$. (13.4)

Введем функцию

$$v(x,t) \stackrel{def:}{=} u(x,t) - w(x,t). \tag{13.5}$$

В силу выражений (13.3) и (13.4) для функции v(x,t) в области D выполнено следующее неравенство:

$$F(x, t, u, u_{x_i}, u_{x_i x_j}) - F(x, t, w_i, w_{x_i}, w_{x_i x_j}) - \frac{\partial v(x, t)}{\partial t} \geqslant 0 \quad \text{B} \quad D. \quad (13.6)$$

Теперь применим формулу Адамара среднего значения следующего вида:

$$F(x, t, u, u_{x_i}, u_{x_i x_j}) - F(x, t, w, w_{x_i}, w_{x_i x_j}) =$$

$$= \sum_{i,j=1,1}^{N,N} a_{ij}(x, t) \frac{\partial^2 v(x, t)}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x, t) \frac{\partial v(x, t)}{\partial x_i} + c(x, t)v(x, t), \quad (13.7)$$

где

$$(a_{ij}(x,t), b_i(x,t), c(x,t)) = \int_0^1 (F_{p_{ij}}, F_{p_i}, F_p) \left(x, t, \vartheta u + (1-\vartheta)w, \theta u_{x_i} + (1-\vartheta)w_{x_i}, \vartheta u_{x_ix_j} + (1-\vartheta)w_{x_ix_j}\right) ds.$$
 (13.8)

Итак, с учетом (13.6) и (13.7) мы получим следующее неравенство:

$$\sum_{i,j=1,1}^{N,N} a_{ij}(x,t) \frac{\partial^2 v(x,t)}{\partial x_i \partial x_j} + \sum_{i=1}^{N} b_i(x,t) \frac{\partial v(x,t)}{\partial x_i} + c(x,t)v(x,t) - \frac{\partial v(x,t)}{\partial t} \geqslant 0 \quad (13.9)$$

в области D. Предположим, что

$$v(x,t) \leqslant 0$$
 на $\partial' D = S \cup \overline{B}$, (13.10)

тогда применяя принцип максимума (теоремы 2, 3) для решения $u(x,t)\in \mathbb{C}^{2,1}_{x,t}(D)\cap \mathbb{C}(\overline{D})$ в ограниченной и неограниченной области D мы получим, что

$$v(x,t) \leqslant 0$$
 B D. (13.11)

Таким образом, мы приходим к следующей теореме [?]:

3 М. О. Корпусов

Теорема 13. Пусть $u(x,t)\in\mathbb{C}^{2,1}_{x,t}(D)\cap\mathbb{C}(\overline{D})$ — это решение уравнения (13.3) в цилиндрической области D^{-1}). Предположим, кроме того, функция u(x,t) удовлетворяет граничным условиям

$$u(x,0) = u_0(x)$$
 $\mu a \quad \overline{B} = \overline{\Omega},$ (13.12)

$$u(x,t) = \psi(x,t)$$
 на $S = \partial\Omega \otimes (0,T].$ (13.13)

Пусть v(x,t) и w(x,t) класса $\mathbb{C}^{2,1}_{x,t}(D)\cap \mathbb{C}(\overline{D})$ удовлетворяют неравенствам

$$L(w)(x,t) \leqslant f(x,t) \leqslant L(v)(x,t) \quad \mathbf{s} \quad D, \tag{13.14}$$

причем оператор L является параболическим в подобласти E области $D\otimes \mathbb{R}^1\otimes \mathbb{R}^N\otimes \mathbb{R}^{N^2}$ следующего вида:

$$E = \left\{ (x, t, p, p_i, p_{ij}) : \\ p \in \{\vartheta u(x, t) + (1 - \vartheta)v(x, t)\} \cup \{\vartheta u(x, t) + (1 - \vartheta)w(x, t)\}, \\ p_i \in \{\vartheta u_{x_i}(x, t) + (1 - \vartheta)v_{x_i}(x, t)\} \cup \{\vartheta u_{x_i}(x, t) + (1 - \vartheta)w_{x_i}(x, t)\}, \\ p_{ij} \in \{\vartheta u_{x_i x_j}(x, t) + (1 - \vartheta)v_{x_i x_j}(x, t)\} \cup \{\vartheta u_{x_i x_i}(x, t) + (1 - \vartheta)w_{x_i x_j}(x, t)\}, \\ (x, t) \in D, \ i, j = \overline{1, N} \right\}.$$

Если

$$v(x,0) \leqslant u_0(x) \leqslant w(x,0) \quad \mathcal{B} \quad \overline{\Omega}, \tag{13.15}$$

$$v(x,t) \leqslant \psi(x,t) \leqslant w(x,t)$$
 на S , (13.16)

тогда

$$v(x,t) \leqslant u(x,t) \leqslant w(x,t) \quad \text{s} \quad D. \tag{13.17}$$

Задача 14. [?] Рассмотрим следующую первую краевую задачу для уравнения нелинейной диффузии:

$$u_t = \Delta u^{1+p}$$
 B $D = \Omega \otimes (0, +\infty), p > 0,$ (13.18)

$$u(x,0) = u_0(x) \geqslant 0, \quad x \in \overline{\Omega},$$
 (13.19)

$$u(x,t) = 0$$
 ha $S = \partial\Omega \otimes (0, +\infty)$. (13.20)

Рассматривая решения этой задачи с разделенными переменными, с помощью признака сравнения получить оценки решения во времени.

Решение. Прежде всего заметим, что $u(x,t) \geqslant 0$ в силу теоремы 13, в которой нужно взять v(x,t)=0. Будем искать частное решение уравнения (13.18) в виде

$$u_a(x,t) = f_a(x)\varphi_a(t).$$

¹⁾ Ограниченной или неограниченной.

Подставляя в уравнение (13.18), мы получим равенство

$$\varphi_{at}(t)f_a(x) = \varphi_a^{1+p}(t)\Delta f_a^{1+p}(x) \Rightarrow \frac{\varphi_{at}(t)}{\varphi_a^{1+p}(t)} = \frac{\Delta f_a^{1+p}(x)}{f_a(x)} = \lambda.$$

Нужно рассмотреть два случая: $\lambda < 0$ и $\lambda > 0$.

Случай первый: глобальная разрешимость. Для удобства положим

$$\lambda = -\frac{1}{p}$$
.

Откуда получим два уравнения

$$\varphi_{at}(t) + \frac{1}{p}\varphi_a^{1+p}(t) = 0, \quad \Delta f_a^{1+p}(x) + \frac{1}{p}f_a(x) = 0, \quad (x,t) \in D. \quad (13.21)$$

Функция $\varphi_a(t)$ имеет следующий явный вид:

$$\varphi_a(t) = \frac{1}{(T+t)^{1/p}},\tag{13.22}$$

где T>0 — произвольная постоянная. А относительно функции $f_a(x)$ потребуем, чтобы она удовлетворяла условию

$$f_a(x) = 0$$
 при $x \in \partial \Omega$. (13.23)

Итак, функция

$$u_a(x,t) \stackrel{def:}{=} \frac{f_a(x)}{(T+t)^{1/p}}, \quad T > 0$$
 (13.24)

удовлетворяет уравнению

$$u_{at} = \Delta u_a^{p+1}$$
 B $D = \Omega \otimes (0, +\infty),$ (13.25)

и граничным условиям

$$u_a(x,0)=rac{f_a(x)}{T^{1/p}}$$
 в $\overline{\Omega}$, $u_a(x,t)=0$ на $S=\partial\Omega\otimes(0,+\infty)$.

Пусть начальное условие $u_0(x)$ удовлетворяет следующим неравенствам:

$$\frac{f_a(x)}{T_1^{1/p}} \leqslant u_0(x) \leqslant \frac{f_a(x)}{T_2^{1/p}}, \quad T_1 > 0, \ T_2 > 0, \tag{13.27}$$

тогда в силу теоремы 13, в которой

$$v(x,t) = \frac{f_a(x)}{(T_1+t)^{1/p}}, \quad w(x,t) = \frac{f_a(x)}{(T_2+t)^{1/p}},$$

получим неравенства

$$\frac{f_a(x)}{(T_1+t)^{1/p}} \leqslant u(x,t) \leqslant \frac{f_a(x)}{(T_2+t)^{1/p}}$$
 при $(x,t) \in \Omega \otimes (0,+\infty)$. (13.28)

Отметим, что существует (см. [?]) не нулевое решение $f_a(x) \not\equiv 0$ краевой задачи

$$\Delta f_a^{1+p}(x) + \frac{1}{p} f_a(x) = 0$$
 в Ω , $f_a(x) = 0$ на $\partial \Omega$. (13.29)

Случай второй: разрушение за конечное время. Для удобства положим

 $\lambda = \frac{1}{p}.$

Рассуждая аналогичным образом, мы получим следующую функцию:

$$u_b(x,t) = \frac{f_b(x)}{(T-t)^{1/p}}, \quad T > 0$$
 (13.30)

- это произвольная постоянная,

$$\Delta f_b^{p+1}(x) - \frac{1}{p} f_b(x) = 0$$
 при $x \in \Omega$, (13.31)

$$f_b(x) = 0$$
 при $x \in \partial \Omega$. (13.32)

Нетривиальное решение краевой задачи (13.31), (13.32) существует (см. монографию [?]). Предположим, что начальная функция $u_0(x)$ удовлетворяет следующим неравенствам:

$$\frac{f_b(x)}{T_1^{1/p}} \leqslant u_0(x) \leqslant \frac{f_b(x)}{T_2^{1/p}}, \quad 0 < T_2 < T_1, \tag{13.33}$$

тогда в силу теоремы 13, в которой

$$v(x,t) = \frac{f_b(x)}{(T_1 - t)^{1/p}}, \quad w(x,t) = \frac{f_b(x)}{(T_2 - t)^{1/p}},$$

получим неравенства

$$rac{f_b(x)}{(T_1-t)^{1/p}} \leqslant u(x,t) \leqslant rac{f_b(x)}{(T_2-t)^{1/p}}$$
 при $x \in \Omega$, $t \in [0,T_2)$. (13.34)

Отметим, что из неравенства снизу в (13.34) вытекает разрушение за конечное время $T_0 \in [0, T_1]$.